910 resultados para Gold deposits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural, geochemical, and isotope studies were carried out on the gold deposits of the Pontes e Lacerda region (Mato Grosso state, Brazil), where rocks of the Aguapei and Rondoniano mobile belts (southwestern Amazonian craton) occur. The orebodies are hosted in metavolcanic, gneiss-granite, quartzite, tonalite, and granite units. Tectonics involve oblique overthrusting (from northeast to southwest), which led to the formation of recumbent folds and thrusts (pathways for the mineralizing fluids), upright folds, and faults with dominant strike-slip component. These unconformities represent potential sites for mineralization. During geological mapping, it was observed that the orebodies consist of quartz, pyrite, and gold, and that the hydrothermal alteration zone contains quartz, sericite, pyrite (altered to limonite), and magnetite (altered to hematite). Chalcopyrite, galena, and sphalerite occur only in the Onça deposit. Chemical analysis of sulfides indicates high contents of Bi, Se, and Te in sulfides and gold, suggesting plutonic involvement in the origin of hydrothermal solutions. K-Ar dating of hydrothermal sericites from gold veins yielded ages in the range from 960 to 840 Ma, which may indicate the age of original crystallization of sericite. Pb-Pb dating in galenas yielded model ages in the range from 1000 to 800 Ma for the Onça deposit, which is in agreement with K-Ar ages. Pb-isotopic ratios indicate high U/Pb and low Th/Pb for the upper-crustal Pb source before incorporation in galena crystals. The Pontes e Lacerda gold deposits yielded ages correlated to the Aguapei event and probably were formed during a Proterozoic contractional tectonic period in the southwestern part of the Amazon craton, which may characterize an important metallogenic epoch in the Pontes e Lacerda region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold is one of the rarer metals in nature, and chemically it is one of the most inactive. Gold forms stable, natural compounds with few other elements, and only with metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jiaodong gold province, the largest gold-producing district in China, is located in the jiaodong peninsula at the eastern margin of the North China craton and bounded by the continental scale Tan-Lu fault, 40 kin to the west. Previous geochronological studies suggest that pervasive gold deposition took place in the western part of the province between 122 and 119 Ma. Here we report high-quality Ar-40/Ar-39 ages of the Pengjiakuang and Rushan deposits from the eastern part of the jiaodong gold province, placing additional chronological constraints on the timing of regional mineralization. Seven sericite grains extracted from auriferous alteration assemblages at the Pengiiakuang deposit yielded well-defined plateau ages between 120.9 +/- 0.4 and 119.1 +/- 0.2 Ma (2 sigma). Three separates of igneous biotite from a sample of the Queshan gneissic granite, adjacent to the Pengjiakuang deposit, gave reproducible plateau ages of 124.6 +/- 0.6 to 123.9 +/- 0.4 Ma (2 sigma). Six sericite separates front two samples in the Rushan deposit yielded Ar-40/Ar-39 plateau ages at 109.3 +/- 0.3 to 107.7 +/- 0.5 Ma (2 sigma), whereas biotite from the Kunyushan monzogranite that hosts the Rushan deposit had plateau ages ranging from 129.0 +/- 0.6 to 126.9 +/- 0.6 Ma (3 separates front one sample). The apparent age gap between hydrothermal sericite and magmtic biotite from both deposits, together with the similar argon closure temperatures for these mica minerals, suggest that gold mineralization had no direct relationship to the granitoid magmatism. Instead, gold deposition coincided with the emplacement of mafic to intermediate dikes widespread in the jiaodong gold province, which have been dated at ca. 122 to 119 Ma and, less commonly, at 110 to 102 Ma. The new Ar-40/Ar-39 ages from the eastern jiaodong peninsula, when combined with published data from the western part suggest that gold mineralization was broadly contemporaneous throughout the district. The Early Cretaceous gold mineralization also is widely developed in four other major gold districts along the Tan-Lu fault. The temporal and spatial correlation of these gold deposits with mafic to intermediate dikes commonly found in most mineralized areas, the presence of well-documented metamorphic core complexes and half-graben basins along the Tan-Lu fault, and voluminous basalts therein, suggest that the Early Cretaceous was an important period of lithospheric extension, possibly caused by the late Mesozoic lithospheric thinning beneath the eastern block of the North China craton. Lithospheric thinning and extension could have resulted in abnormally high heat and fluid fluxes necessary for large-scaled gold mineralization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small mesothermal vein quam-gold-base-metal sulfide deposits from which some 20 t of Au-Ag bullion have been extracted, are the most common gold deposits in the Georgetown region of north Queensland-several hundred were mined or prospected between 1870 and 1950. These deposits are mostly hosted by Proterozoic granitic and metamorphic rocks and are similar to the much larger Charters Towers deposits such as Day Dawn and Brilliant, and in some respects to the Motherlode deposits of California. The largest deposit in the region-Kidston (> 138 t of Au and Ag since 1985)- is substantially different. It is hosted by sheeted quartz veins and cavities in brecciated Silurian granite and Proterozoic metamorphics above nested high-level Carboniferous intrusives associated with a nearby cauldron subsidence structure. This paper provides new information (K-Ar and Rb-Sr isotopic ages, preliminary oxygen isotope and fluid-inclusion data) from some of the mesothermal deposits and compares it with the Kidston deposit. All six dated mesothermal deposits have Siluro-Devonian (about 425 to 400 Ma) ages. All nine of such deposits analysed have delta(18)O quartz values in the range 8.4 to 15.7 parts per thousand, Fluid-inclusion data indicate homogenisation temperatures in the range 230-350 degrees C. This information, and a re-interpretation of the spatial relationships of the deposits with various elements of the updated regional geology, is used to develop a preliminary metallogenic model of the mesothermal Etheridge Goldfield. The model indicates how the majority of deposits may have formed from hydrothermal systems initiated during the emplacement of granitic batholiths that were possibly, but not clearly, associated with Early Palaeozoic subduction, and that these fluid systems were dominated by substantially modified meteoric and/or magmatic fluids. The large Kidston deposit and a few small relatives are of Carboniferous age and formed more directly from magmatic systems much closer to the surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the Cuiabá region-State of Mato Grosso, Central Brazil-primary gold mineralization is hosted by two generations of quartz veins in Precambrian metamorphic terrains of the Cuiabá Group. Gold is mined from the veins and mainly from the eluvial horizons that cover the deeply altered basement. In the lodes gold occurs as small particles (less than 1 mm) associated with pyrite and contains up to 5% Ag. Larger particles and nuggets of almost pure gold are found in the iron duricrust which caps the upper levels of the weathering profile. It is difficult to determine the average grade of this kind of deposit but some prospects in the Cuiabá region produce up to 2 g gold per ton of ore. Lateritization is responsible for both the formation of the iron crust and the concentration of gold within the regolith. Under a tropical climate, the supergene alteration of phyllites of the Cuiabá Group has led to the formation of a weathering profile consisting typically of saprolite, mottled clay zone and duricrust, from bottom to top. The duricrust is directly derived form the in situ weathering of phyllites. Geochemical balance calculations indicate that in the transition from the saprolite to the duricrust lateritization has promoted a progressive loss of Si, Al and K, and more than 500% of absolute Fe enrichment. Gold underwent a supergene evolution related to the development of the weathering profile. In the saprolite and mottled clay zone, associated with quartz and oxidized sulfides, gold dissolves as demonstrated by corrosion features at the surface of the particles. The formation of secondary gold in the duricrust is indicated by the larger size of the nuggets, their higher fineness and the close relationship between gold and the neoformed iron oxy-hydroxides. © 1991.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Central gold belt of peninsular Malaysia comprises a number of gold deposits located in the east of the N-S striking Bentong-Raub Suture Zone. The Tersang gold deposit is one of the gold deposits in the gold belt and hosted in sandstone, rhyolite and breccia units. The deposit has an inferred resource of 528,000 ounces of gold. The geochronology of the Tersang deposit has been newly constrained by LA ICP-MS U-Pb zircon dating. The maximum depositional age of the host sedimentary rocks ranges from Early Carboniferous to Early Permian (261.5 ± 4.9 Ma to 333.5 ± 2.5 Ma) for the host sandstone and Late Triassic for the rhyolite intrusion (218.8 ± 1.7 Ma). Textural characteristics of pyrite have revealed five types including (1) Euhedral to subhedral pyrite with internal fracturing and porous cores located in the sandstone layers (pyrite 1); (2) Anhedral pyrite overgrowths on pyrite 1 and disseminated in stage 1 vein (pyrite 2); (3) Fracture-filled or vein pyrite located in stages 1 and 2 vein (pyrite 3); (4) Euhedral pyrite with internal fractures also located in stage 2 vein (pyrite 4); and (5) Subhedral clean pyrite located in the rhyolite intrusion (pyrite 5). Based on pyrite mapping and spot analyses, two main stages of gold enrichment are documented from the Tersang gold deposit. Gold in sandstone-hosted pyrite 1 (mean 4.3 ppm) shows best correlation with Bi and Pb (as evidenced on pyrite maps). In addition, gold in pyrite 3 (mean 8 ppm) located in stage 2 vein shows a good correlation with As, Ag, Sb, Cu, Tl, and Pb. In terms of gold exploration, we suggest that elements such as As, Ag, Sb, Cu, Tl, Bi, and Pb associated with Au may serve as vectoring tools in gold exploration. Our new geological, structural, geochemical and isotopic data together with mineral paragenesis, pyrite chemistry and ore fluid characteristics indicate that the Tersang gold deposit is comparable to a sediment-hosted gold deposit. Our new genetic model suggests deposition of the Permo-Carboniferous sediments followed by intrusion of rhyolitic magma in the Late Triassic. At a later stage, gold mineralisation overprinted the rhyolite intrusion and the sandstone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circum Pacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200 °C, the ore is dominantly cinnabar with Hg-Sb-As±Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70 ±3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological ancl geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Jiaodong gold province is the largest gold repository in China. Both mineralization and granitoid hosts are spatially related to the crustal-scale Tan-Lu strike-slip fault system, which developed along the Mesozoic continental margin in eastern China. A series of Ar-40/Ar-39 laser incremental heating analyses of hydrothermal sericite/muscovite from three major gold deposits (Jiaojia, Xincheng, and Wangershan) and igneous biotite from the granodiorite hosts were performed to establish a possible temporal link between gold mineralization, magmatism, and movement along the Tan-Lu fault zone. Magmatic biotite crystals yield well-defined and concordant plateau ages between 124.5+/-0.4 Ma and 124.0+/-0.4 Ma (2sigma), whereas sericite and muscovite samples (a total of 30 single separates) give reproducible plateau ages ranging from 121.0+/-0.4 Ma to 119.2+/-0.2 Ma (2sigma). An integration of our Ar-40/Ar-39 results with age data from other major gold deposits in Jiaodong demonstrates that widespread gold mineralization occurred contemporaneously during a 2-3-m.yr. period. Most gold deposits show intimate spatial associations with abundant mafic to intermediate dikes. The mafic dikes have K-Ar ages of 123.5-119.6 Ma, in excellent agreement with those of the gold deposits. These newly obtained Ar-40/Ar-39 ages, in combination with other independent geological and geochronological data on granodioritic intrusions (130-126 Ma), volcanic rocks (1243.6-114.7 Ma), and deformed rocks within strike-slip faults (132-120 Ma) in Jiaodong or adjacent areas, also support the idea that gold mineralization postdated the granodioritic magmatism but was contemporaneous with mafic magmatism and volcanism, all controlled by the transtensional motion along the Tan-Lu fault in the Early Cretaceous.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

40Ar/39Ar geochronology of muscovite and biotite grains genetically related to gold and Be–Ta–Li pegmatites from the Seridó Belt (Borborema province, NE Brazil) yield well-defined, reliable plateau ages. This information, combined with data about paragenetic and field relationships, reveals Cambro-Ordovician mineralization ages (520 and 500–506 Ma) for the orogenic gold deposits in the Seridó Belt. Biotite ages of 525±2 Ma, which represent the mean weighted results of the incremental heating analysis of six biotite single crystals, record the time of pegmatite emplacement and reactivation of Brasiliano/Pan-African strike-slip shear zones. These results, along with previous structural evolution studies, suggest that shear zones formed during the Brasiliano/Pan-African event were reactivated in the Upper Cambrian–Lower Ordovician. Mineralization occurs late in the history of the orogen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrothermal alteration of a quartz-K-feldspar rock is simulated numerically by coupling fluid flow and chemical reactions. Introduction of CO2 gas generates an acidic fluid and produces secondary quartz, muscovite and/or pyrophyllite at constant temperature and pressure of 300 degrees C and 200 MPa. The precipitation and/or dissolution of the secondary minerals is controlled by either mass-action relations or rate laws. In our simulations the mass of the primary elements are conserved and the mass-balance equations are solved sequentially using an implicit scheme in a finite-element code. The pore-fluid velocity is assumed to be constant. The change of rock volume due to the dissolution or precipitation of the minerals, which is directly related to their molar volume, is taken into account. Feedback into the rock porosity and the reaction rates is included in the model. The model produces zones of pyrophyllite quartz and muscovite due to the dissolution of K-feldspar. Our model simulates, in a simplified way, the acid-induced alteration assemblages observed in various guises in many significant mineral deposits. The particular aluminosilicate minerals produced in these experiments are associated with the gold deposits of the Witwatersrand Basin.