910 resultados para Goddard Space Flight Center. Mission Operations and Data Systems Directorate.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
Includes bibliographical references.
Resumo:
Shipping list no.: 85-926-P.
Resumo:
Shipping list no.: 93-25-P.
Resumo:
Includes bibliographical references.
Resumo:
Cover title.
Resumo:
Vol. 2, edited by S. C. Freden, E. P. Mercanti, and D. E. Witten, published by Goddard Space Flight Center, Greenbelt, Md.; v. 3, edited by S. C. Freden and E. P. Mercanti, also published by Goddard.
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
Surface elevation maps of the southern half of the Greenland subcontinent are produced from radar altimeter data acquired by the Seasat satellite. A summary of the processing procedure and examples of return waveform data are given. The elevation data are used to generate a regular grid which is then computer contoured to provide an elevation contour map. Ancillary maps show the statistical quality of the elevation data and various characteristics of the surface. The elevation map is used to define ice flow directions and delineate the major drainage basins. Regular maps of the Jakobshavns Glacier drainage basin and the ice divide in the vicinity of Crete Station are presented. Altimeter derived elevations are compared with elevations measured both by satellite geoceivers and optical surveying.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The oceans play a critical role in the Earth's climate, but unfortunately, the extent of this role is only partially understood. One major obstacle is the difficulty associated with making high-quality, globally distributed observations, a feat that is nearly impossible using only ships and other ocean-based platforms. The data collected by satellite-borne ocean color instruments, however, provide environmental scientists a synoptic look at the productivity and variability of the Earth's oceans and atmosphere, respectively, on high-resolution temporal and spatial scales. Three such instruments, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) onboard ORBIMAGE's OrbView-2 satellite, and two Moderate Resolution Imaging Spectroradiometers (MODIS) onboard the National Aeronautic and Space Administration's (NASA) Terra and Aqua satellites, have been in continuous operation since September 1997, February 2000, and June 2002, respectively. To facilitate the assembly of a suitably accurate data set for climate research, members of the NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project and SeaWiFS Project Offices devote significant attention to the calibration and validation of these and other ocean color instruments. This article briefly presents results from the SIMBIOS and SeaWiFS Project Office's (SSPO) satellite ocean color validation activities and describes the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), a state-of-the-art system for archiving, cataloging, and distributing the in situ data used in these activities.