976 resultados para God of the Exodus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For Jewish-Hellenistic authors writing in Egypt, the Exodus story posed unique challenges. After all, to them Egypt was, as Philo of Alexandria states, their fatherland. How do these authors come to terms with the biblical story of liberation from Egyptian slavery and the longing for the promised land? In this chapter I am taking a close look at Philo’s detailed discussion of the Exodus and locate it within the larger context of Jewish-Hellenistic literature (Wisdom of Solomon, Ezekiel’s Exagoge). In Philo’s rewriting of the Exodus the destination of the journey is barely mentioned. Contrary to the biblical narrative, in the scene of the burning bush, as retold by Philo, God does not tell Moses where to go. Philo’s main concern is what happens in Egypt: both in biblical times and in his own days. The Exodus is nevertheless important to Philo: He reads the story allegorically as a journey from the land of the body to the realms of the mind. Such a symbolic reading permitted him to control the meaning of the Exodus and to stay, literally and figuratively, in Egypt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this paper is to demonstrate the potential of the EXODUS evacuation model in building environments. The latest PC/workstation version of EXODUS is described and is also applied to a large hypothetical supermarket/restaurant complex measuring 50 m x 40 m. A range of scenarios is presented where population characteristics (such as size, individual travel speeds, and individual response times), and enclosure configuration characteristics (such as number of exits, size of exits, and opening times of exits) are varied. The results demonstrate a wide range of occupant behavior including overtaking, queuing, redirection, and conflict avoidance. Evacuation performance is measured by a number of model predicted parameters including individual exit flow rates, overall evacuation flow rates, total evacuation time, average evacuation time per occupant, average travel distance, and average wait time. The simulations highlight the profound impact that variations in individual travel speeds and occupant response times have in determining the overall evacuation performance. 1. Jin, T., and Yamada T., "Experimental Study of Human Behavior in Smoke Filled Corridors," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 511-519. 2. Galea, E.R., and Galparsoro, J.M.P., "EXODUS: An Evacuation Model for Mass Transport Vehicles," UK CAA Paper 93006 ISBN 086039 543X, CAA London, 1993. 3. Galea, E.R., and Galparsoro, J.M.P., "A Computer Based Simulation Model for the Prediction of Evacuation from Mass Transport Vehicles," Fire Safety Journal, Vol. 22, 1994, pp. 341-366. 4. Galea, E.R., Owen, M., and Lawrence, P., "Computer Modeling of Human Be havior in Aircraft Fire Accidents," to appear in the Proceedings of Combus tion Toxicology Symposium, CAMI, Oklahoma City, OK, 1995. 5. Kisko, T.M. and Francis, R.L., "EVACNET+: A Computer Program to Determine Optimal Building Evacuation Plans," Fire Safety Journal, Vol. 9, 1985, pp. 211-220. 6. Levin, B., "EXITT, A Simulation Model of Occupant Decisions and Actions in Residential Fires," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 561-570. 7. Fahy, R.F., "EXIT89: An Evacuation Model for High-Rise Buildings," Pro ceedings of The Third International Sym posium on Fire Safety Science, 1991, pp. 815-823. 8. Thompson, P.A., and Marchant, E.W., "A Computer Model for the Evacuation of Large Building Populations," Fire Safety Journal, Vol. 24, 1995, pp. 131-148. 9. Still, K., "New Computer System Can Predict Human Behavior Response to Building Fires," FIRE 84, 1993, pp. 40-41. 10. Ketchell, N., Cole, S.S., Webber, D.M., et.al., "The Egress Code for Human Move ment and Behavior in Emergency Evacu ations," Engineering for Crowd Safety (Smith, R.A., and Dickie, J.F., Eds.), Elsevier, 1993, pp. 361-370. 11. Takahashi, K., Tanaka, T. and Kose, S., "An Evacuation Model for Use in Fire Safety Design of Buildings," Proceedings of The Second International Symposium on Fire Safety Science, 1988, pp. 551- 560. 12. G2 Reference Manual, Version 3.0, Gensym Corporation, Cambridge, MA. 13. XVT Reference Manual, Version 3.0 XVT Software Inc., Boulder, CO. 14. Galea, E.R., "On the Field Modeling Approach to the Simulation of Enclosure Fires, Journal of Fire Protection Engineering, Vol. 1, No. 1, 1989, pp. 11-22. 15. Purser, D.A., "Toxicity Assessment of Combustion Products," SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, MA, pp. 1-200 - 1-245, 1988. 16. Hankin, B.D., and Wright, R.A., "Pas senger Flows in Subways," Operational Research Quarterly, Vol. 9, 1958, pp. 81-88. 17. HMSO, The Building Regulations 1991 - Approved Document B, section B 1 (1992 edition), HMSO publications, London, pp. 9-40. 18. Polus A., Schofer, J.L., and Ushpiz, A., "Pedestrian Flow and Level of Service," Journal of Transportation Engineering, Vol. 109, 1983, pp. 46-47. 19. Muir, H., Marrison, C., and Evans, A., "Aircraft Evacuations: the Effect of Passenger Motivation and Cabin Con figuration Adjacent to the Exit," CAA Paper 89019, ISBN 0 86039 406 9, 1989. 20. Muir, H., Private communication to appear as a CAA report, 1996.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer egress simulation has potential to be used in large scale incidents to provide live advice to incident commanders. While there are many considerations which must be taken into account when applying such models to live incidents, one of the first concerns the computational speed of simulations. No matter how important the insight provided by the simulation, numerical hindsight will not prove useful to an incident commander. Thus for this type of application to be useful, it is essential that the simulation can be run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of CPUs. In this paper we examine the development of a parallel version of the buildingEXODUS software. The parallel strategy implemented is based on a systematic partitioning of the problem domain onto an arbitrary number of sub-domains. Each sub-domain is computed on a separate processor and runs its own copy of the EXODUS code. The software has been designed to work on typical office based networked PCs but will also function on a Windows based cluster. Two evaluation scenarios using the parallel implementation of EXODUS are described; a large open area and a 50 story high-rise building scenario. Speed-ups of up to 3.7 are achieved using up to six computers, with high-rise building evacuation simulation achieving run times of 6.4 times faster than real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If an opening to the argument of this dissertation is of imperative necessity, one might tentatively begin with Herbert Quain, born in Roscommon, Ireland, author of the novels The God of the Labyrinth (1933) and April March (1936), the short-story collection Statements (1939), and the play The Secret Mirror (undated). To a certain extent, this idiosyncratic Irish author, who hailed from the ancient province of Connacht, may be regarded as a forerunner of the type of novels which will be considered in this dissertation. Quain was, after all, the unconscious creator of one of the first structurally disintegrated novels in the history of western literature, April March. His first novel, The God of the Labyrinth, also exhibits elements which are characteristic of structurally disintegrated fiction, for it provides the reader with two possible solutions to a mysterious crime. As a matter of fact, one might suggest that Quain’s debut novel offers the reader the possibility to ignore the solution to the crime and carry on living his or her readerly life, turning a blind eye to the novel itself. It may hence be argued that Quain’s first novel is in fact a compound of three different novels. It is self-evident that the structure of Quain’s oeuvre is of an experimental nature, combining geometrical precision with authorial innovation, and one finds in it a higher consideration for formal defiance than for the text itself. In other words, the means of expression are the concern of the author and not, interestingly, the textual content. April March, for example, is a novel which regresses back into itself, its first chapter focussing on an evening which is preceded by three possible evenings which, in turn, are each preceded by three other, dissimilar, possible evenings. It is a novel of backward-movement, and it is due to this process of branching regression that April March contains within itself at least nine possible novels. Structure, therefore, paradoxically controls the text, for it allows the text to expand or contract under its formal limitations. In other words, the formal aspects of the novel, usually associated with the restrictive device of a superior design, contribute to a liberation of the novel’s discourse. It is paradoxical only in the sense that the idea of structure necessarily entails the fixation of a narrative skeleton that determines how plot and discourse interact, something which Quain flouts for the purposes of innovation. In this sense, April March’s convoluted structure allows for multiple readings and interpretations of the same text, consciously germinating narratives within itself, producing different texts from a single, unique source. Thus, text and means of expression are bonded by a structural design that, rather than limiting, liberates the text of the novel.