19 resultados para Glyoxyl
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Penicillin G acylase is the second most important enzyme used by industry in an immobilized form. Penicillin hydrolysis is its main application. This reaction is used to produce 6-aminopenicillanic acid (6-APA), an intermediate in the synthesis of semisynthetic antibiotics. This work aims to compare catalytic properties of different penicillin G acylase (PGA) derivatives obtained by multipoint immobilization of the enzyme on macroporous silica. Enzyme amino groups react with different aldehyde groups produced in the support using either glutaraldehyde or glyoxyl activation. In the former method, silica reacts with g-aminopropyltriethoxysilane (g-APTS) and glutaraldehyde; in the latter, a reaction with glycidoxypropyltrimethoxysilane (GPTMS) is followed by acid hydrolysis and oxidation using sodium periodate. This work determines the influence of degree of activation, using glutaraldehyde, on immobilization parameters. PGA was immobilized on these two different supports. Maximum enzyme load, immobilized enzyme activity (derivative activity), rate of immobilization and thermal stability were checked for both cases. For glutaraldehyde activation, the results showed that 0.5% of the g-APTS is sufficient for all the hydroxyl groups in the silica to react. They also showed that degree of activation only affects immobilization yield and reaction velocity and that reduction of the glutaraldehyde derivatives with sodium borohydride does not affect their thermal stability. In comparing the derivatives obtained using glyoxyl and glutaraldehyde activation, it was observed that the glyoxyl derivatives presented better immobilization parameters, with a maximum enzyme load of 264 IU/g silica and a half-life of 20 minutes at 60 °C.
Resumo:
The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5. 0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Invertase from Saccharomyces cerevisiae was immobilized on agarose beads, activated with various groups (glyoxyl, MANAE or glutaraldehyde), and on some commercial epoxy supports (Eupergit and Sepabeads). Very active and stable invertase derivatives were produced by the adsorption of the enzyme on MANAE-agarose, MANAE-agarose treated with glutaraldhyde and glutaraldehyde-agarose supports. At pH 5.0, these derivatives retained full activity after 24h at 40°C and 50 °C. When assayed at 40°C and 50°C, with the pH adjusted to 7.0, the invertase-MANAE-agarose derivative treated with glutaraldehyde retained 80% of the initial activity. Recovered activities of the derivatives produced with MANAE, MANAE treated with glutaraldehyde and glutaraldehyde alone were 73.5%, 44.4% and 36.8%, respectively. These three preparations were successfully employed to produce glucose and fructose in 3 cycles of sucrose hydrolysis.
Resumo:
The production of xylooligosaccharides (XOS) using a packed-bed enzymatic reactor was studied at lab-scale. For this, a xylanase from Aspergillus versicolor was immobilized on different supports. The optimal derivative was xylanase immobilized on glyoxyl-agarose supports. This derivative preserved 85% of its catalytic activity; it was around 700-fold more stable than the soluble enzyme after incubation at 60. °C and was able to be reused for at least 10 1. h-cycles retaining full catalytic activity. About 18% of oligosaccharides with prebiotic interest (X2-X6) were produced by the glyoxyl derivative in batch hydrolysis. The production of xylobiose was 2.5-fold higher using the immobilized preparation than with soluble enzyme and small concentrations of xylose (<0.1%) were observed only at the end of the reaction. The derivative was employed on a packed bed reactor, and the continuous operation with no recirculation reached 56% and 70% of the end of reaction with flow rates of 60. mL/h and 12. mL/h, respectively. In continuous operation with recirculation at a flow rate of 60. mL/h, the reaction was completed after four hours. © 2013 Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study was to evaluate the efficacy of peroxidase immobilized on corncob powder for the discoloration of dye. Peroxidase was extracted from soybean seed coat, followed by amination of the surface of the tertiary structure. The aminated peroxidase was immobilized on highly activated corncob powder and employed for the discoloration of bromophenol blue. Amination was performed with 10 or 50 mmol.L-1carbodiimide and 1 mol.L-1ethylenediamine. The amount of protein in the extract was 0.235 ± 0.011 mg.mL-1and specific peroxidase activity was 86.06 ± 1.52 µmol min-1.mg-1, using 1 mmol.L-1ABTS as substrate. Ten mmol.L-1and 50 mmol.L-1 aminated peroxidase retained 88 and 100% of the initial activity. Following covalent immobilization on a corncob powder-glyoxyl support, 10 and 50 mmol.L-1aminated peroxidase retained 74 and 86% of activity, respectively. Derivatives were used for the discoloration of 0.02 mmol.L-1bromophenol blue solution. After 30 min, 93 and 89% discoloration was achieved with the 10 mmol.L-1and 50 mmol.L-1derivatives, respectively. Moreover, these derivatives retained 60% of the catalytic properties when used three times. Peroxidase extracted from soybean seed coat immobilized on a low-cost corncob powder support exhibited improved thermal stability. Keywords: Peroxidases. Multipoint immobilization of enzymes. Aminated enzymes. Corncob powder. RESUMO Descoloração de azul de bromofenol utilizando peroxidase imobilizada em pó de sabugo de milho altamente ativado Nesta pesquisa a enzima peroxidase foi extraída do tegumento de sementes de soja, e a superfície da estrutura terciária foi aminada. A peroxidase aminada foi imobilizada em suporte pó de sabugo de milho altamente ativado e utilizado na descoloração de azul de bromofenol. A aminação da peroxidase foi realizada com carbodiimida em concentrações de 10 e 50 mmol.L-1, e 1 mol.L-1de etilenodiamina. A quantidade de proteínas no extrato foi de 0,235 ± 0,011 mg.mL-1, e a atividade específica da peroxidase foi 86,06 ± 1,52 µmol min-1.mg-1, usando 1 mmol.L-1de ABTS como substrato. A peroxidase aminada a 10 mmol.L-1reteve 88% e a aminada a 50 mmol.L-1reteve 100% da atividade inicial. As peroxidases aminadas a 10 ou 50 mmol.L-1foram covalentemente imobilizadas em suporte glioxil-pó de sabugo de milho com atividade recuperada de 74% e 86%, respectivamente. Os derivados obtidos foram utilizados na descoloração de solução de azul de bromofenol 0,02 mmol.L-1. Após 30 min 93% de descoloração foram alcançados com o derivado glioxil-pó de sabugo de milho com a peroxidase aminada 10 mmol.L-1e 89% com a aminada 50 mmol.L-1. Estes derivados mantiveram 60% das propriedades catalíticas, quando utilizado por três vezes. A peroxidase extraída do tegumento da semente de soja imobilizada em suporte de baixo custo pó de sabugo de milho apresentou melhoria na estabilidade térmica da enzima. Palavras-chave: Peroxidases. Imobilização multipontual de enzimas. Aminação de enzimas. Pó de sabugo de milho.
Resumo:
Produção de glicose e frutose por invertase de Saccharomyces cerevisiae imobilizada em suporte MANAE-Agarose Invertase de Saccharomyces cerevisiaefoi imobilizada em agarose ativada com diferentes grupos (glioxil, MANAE ou glutaraldeído) e suportes epóxidos comerciais (Eupergit e Sepabeads). Derivados de invertase ativos e estabilizados foram produzidos pela adsorção da enzima em suportes MANAE-agarose, MANAE-agarose tratado com glutaraldeído e glutaraldeído-agarose. Em pH 5,0 estes derivados retiveram total atividade até 24h a 40 ºC e 50 ºC. Quando os ensaios foram a 40 °C e 50 °C com o pH alterado para 7,0, o derivado invertase-MANAE-agarose tratado com glutaraldeído apresentou 80% da atividade inicial. As atividades recuperadas dos derivados foram 73,5%, 44,4% e 36,8%, respectivamente para MANAE, MANAE tratado com glutaraldeído e glutaraldeído. Essas três preparações foram empregadas com sucesso em 3 ciclos de hidrólise da sacarose para produzir glicose e frutose.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The aim of the present study was to evaluate the efficacy of peroxidase immobilized on corncob powder for the discoloration of dye. Peroxidase was extracted from soybean seed coat, followed by amination of the surface of the tertiary structure. The aminated peroxidase was immobilized on highly activated corncob powder and employed for the discoloration of bromophenol blue. Amination was performed with 10 or 50 mmol.L-1 carbodiimide and 1 mol.L-1 ethylenediamine. The amount of protein in the extract was 0.235 ± 0.011 mg.mL-1 and specific peroxidase activity was 86.06 ± 1.52 µmol min-1 . mg-1, using 1 mmol.L-1 ABTS as substrate. Ten mmol.L-1 and 50 mmol.L-1 aminated peroxidase retained 88 and 100% of the initial activity. Following covalent immobilization on a corncob powder-glyoxyl support, 10 and 50 mmol.L-1 aminated peroxidase retained 74 and 86% of activity, respectively. Derivatives were used for the discoloration of 0.02 mmol.L-1 bromophenol blue solution. After 30 min, 93 and 89% discoloration was achieved with the 10 mmol.L-1 and 50 mmol.L-1 derivatives, respectively. Moreover, these derivatives retained 60% of the catalytic properties when used three times. Peroxidase extracted from soybean seed coat immobilized on a low-cost corncob powder support exhibited improved thermal stability.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)