9 resultados para Glutamates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: In single-group studies, chromosomal rearrangements of the anaplastic lymphoma kinase gene (ALK ) have been associated with marked clinical responses to crizotinib, an oral tyrosine kinase inhibitor targeting ALK. Whether crizotinib is superior to standard chemotherapy with respect to efficacy is unknown. METHODS: We conducted a phase 3, open-label trial comparing crizotinib with chemotherapy in 347 patients with locally advanced or metastatic ALK-positive lung cancer who had received one prior platinum-based regimen. Patients were randomly assigned to receive oral treatment with crizotinib (250 mg) twice daily or intravenous chemotherapy with either pemetrexed (500 mg per square meter of body-surface area) or docetaxel (75 mg per square meter) every 3 weeks. Patients in the chemotherapy group who had disease progression were permitted to cross over to crizotinib as part of a separate study. The primary end point was progression-free survival. RESULTS: The median progression-free survival was 7.7 months in the crizotinib group and 3.0 months in the chemotherapy group (hazard ratio for progression or death with crizotinib, 0.49; 95% confidence interval [CI], 0.37 to 0.64; P<0.001). The response rates were 65% (95% CI, 58 to 72) with crizotinib, as compared with 20% (95% CI, 14 to 26) with chemotherapy (P<0.001). An interim analysis of overall survival showed no significant improvement with crizotinib as compared with chemotherapy (hazard ratio for death in the crizotinib group, 1.02; 95% CI, 0.68 to 1.54; P=0.54). Common adverse events associated with crizotinib were visual disorder, gastrointestinal side effects, and elevated liver aminotransferase levels, whereas common adverse events with chemotherapy were fatigue, alopecia, and dyspnea. Patients reported greater reductions in symptoms of lung cancer and greater improvement in global quality of life with crizotinib than with chemotherapy. CONCLUSIONS: Crizotinib is superior to standard chemotherapy in patients with previously treated, advanced non-small-cell lung cancer with ALK rearrangement. (Funded by Pfizer; ClinicalTrials.gov number, NCT00932893.) Copyright © 2013 Massachusetts Medical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Proteins that undergo receptor-mediated endocytosis are subject to lysosomal degradation, requiring radioiodination methods that minimize loss of radioactivity from tumor cells after this process occurs. To accomplish this, we developed the residualizing radioiodination agent N(ϵ)-(3-[(*)I]iodobenzoyl)-Lys(5)-N(α)-maleimido-Gly(1)-D-GEEEK (Mal-D-GEEEK-[(*)I]IB), which enhanced tumor uptake but also increased kidney activity and necessitates generation of sulfhydryl moieties on the protein. The purpose of the current study was to synthesize and evaluate a new D-amino acid based agent that might avoid these potential problems. METHODS: N(α)-(3-iodobenzoyl)-(5-succinimidyloxycarbonyl)-D-EEEG (NHS-IB-D-EEEG), which contains 3 D-glutamates to provide negative charge and a N-hydroxysuccinimide function to permit conjugation to unmodified proteins, and the corresponding tin precursor were produced by solid phase peptide synthesis and subsequent conjugation with appropriate reagents. Radioiodination of the anti-HER2 antibody trastuzumab using NHS-IB-D-EEEG and Mal-D-GEEEK-IB was compared. Paired-label internalization assays on BT474 breast carcinoma cells and biodistribution studies in athymic mice bearing BT474M1 xenografts were performed to evaluate the two radioiodinated D-peptide trastuzumab conjugates. RESULTS: NHS-[(131)I]IB-D-EEEG was produced in 53.8%±13.4% and conjugated to trastuzumab in 39.5%±7.6% yield. Paired-label internalization assays with trastuzumab-NHS-[(131)I]IB-D-EEEG and trastuzumab-Mal-D-GEEEK-[(125)I]IB demonstrated similar intracellular trapping for both conjugates at 1h ((131)I, 84.4%±6.1%; (125)I, 88.6%±5.2%) through 24h ((131)I, 60.7%±6.8%; (125)I, 64.9%±6.9%). In the biodistribution experiment, tumor uptake peaked at 48 h (trastuzumab-NHS-[(131)I]IB-D-EEEG, 29.8%±3.6%ID/g; trastuzumab-Mal-D-GEEEK-[(125)I]IB, 45.3%±5.3%ID/g) and was significantly higher for (125)I at all time points. In general, normal tissue levels were lower for trastuzumab-NHS-[(131)I]IB-D-EEEG, with the differences being greatest in kidneys ((131)I, 2.2%±0.4%ID/g; (125)I, 16.9%±2.8%ID/g at 144 h). CONCLUSION: NHS-[(131)I]IB-D-EEEG warrants further evaluation as a residualizing radioiodination agent for labeling internalizing antibodies/fragments, particularly for applications where excessive renal accumulation could be problematic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor cells from aberrant misincorporation of uracil during TS inhibition. The goal of this study was to investigate the expression and significance of dUTPase in mediating response to TS-targeted agents in NSCLC. The expression of dUTPase in NSCLC cell lines and clinical specimens was measured by quantitative real-time reverse transcriptase PCR and immunohistochemistry. Using a validated RNA interference approach, dUTPase was effectively silenced in a panel of NSCLC cell lines and response to the fluoropyrimidine fluorodeoxyuridine (FUdR) and the antifolate pemetrexed was analyzed using growth inhibition and clonogenic assays. Apoptosis was analyzed by flow cytometry. Significant variation in the quantity and cellular expression of dUTPase was observed, including clear evidence of overexpression in NSCLC cell line models and tumor specimens at the mRNA and protein level. RNA interference-mediated silencing of dUTPase significantly sensitized NSCLC cells to growth inhibition induced by FUdR and pemetrexed. This sensitization was accompanied by a significant expansion of intracellular dUTP pools and significant decreases in NSCLC cell viability evaluated by clonogenicity and apoptotic analyses. Together, these results strongly suggest that uracil misincorporation is a potent determinant of cytotoxicity to TS inhibition in NSCLC and that inhibition of dUTPase is a mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating the evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. The purpose of this study was to collect and compare sequences of matrix and bone γ-carboxyglutamic acid proteins (MGP and BGP, respectively) to identify common features and determine the evolutionary relationship between MGP and BGP. Thirteen cDNAs and genes were cloned using standard methods or reconstructed through the use of comparative genomics and data mining. These sequences were compared with available annotated sequences (a total of 48 complete or nearly complete sequences, 28 BGPs and 20 MGPs) have been identified across 32 different species (representing most classes of vertebrates), and evolutionarily conserved features in both MGP and BGP were analyzed using bioinformatic tools and the Tree-Puzzle software. We propose that: 1) MGP and BGP genes originated from two genome duplications that occurred around 500 and 400 million years ago before jawless and jawed fish evolved, respectively; 2) MGP appeared first concomitantly with the emergence of cartilaginous structures, and BGP appeared thereafter along with bony structures; and 3) BGP derives from MGP. We also propose a highly specific pattern definition for the Gla domain of BGP and MGP. Previous Section Next Section BGP1 (bone Gla protein or osteocalcin) and MGP (matrix Gla protein) belong to the growing family of vitamin K-dependent (VKD) proteins, the members of which are involved in a broad range of biological functions such as skeletogenesis and bone maintenance (BGP and MGP), hemostasis (prothrombin, clotting factors VII, IX, and X, and proteins C, S, and Z), growth control (gas6), and potentially signal transduction (proline-rich Gla proteins 1 and 2). VKD proteins are characterized by the presence of several Gla residues resulting from the post-translational vitamin K-dependent γ-carboxylation of specific glutamates, through which they can bind to calcium-containing mineral such as hydroxyapatite. To date, VKD proteins have only been clearly identified in vertebrates (1) although the presence of a γ-glutamyl carboxylase has been reported in the fruit fly Drosophila melanogaster (2) and in marine snails belonging to the genus Conus (3). Gla residues have also been found in neuropeptides from Conus venoms (4), suggesting a wider prevalence of γ-carboxylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available beta-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using (111)In-labelled derivatives. METHODS: Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using (111)In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the (nat)In-metallated compounds were determined by receptor autoradiography using (125)I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the (111)In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. RESULTS: IC(50) values of the (nat)In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC(50) between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All (111)In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All (111)In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to (111)In-DTPA-minigastrin 0 (0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. CONCLUSIONS: Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator-bearing derivatives make them potentially suitable for clinical purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nm23 genes, which encode nucleoside diphosphate kinases, have been implicated in suppressing tumor metastasis. The motility of human breast carcinoma cells can be suppressed by transfection with wild-type nm23-H1, but not by transfections with two nm23-H1 mutants, nm23-H1S12OG and nm23-H1P96S. Here we report that nm23-H1 can transfer a phosphate from its catalytic histidine to aspartate or glutamate residues on 43-kDa membrane proteins. One of the 43-kDa membrane proteins was not phosphorylated by either nm23-H1P96S or nm23-H1S120G, and another was phosphorylated much more slowly by nm23-H1P96S and by nm23-H1S120G than by wild-type nm23-H1. Nm23-H1 also can transfer phosphate from its catalytic histidine to histidines on ATP-citrate lyase and succinic thiokinase. The rates of phosphorylation of ATP-citrate lyase by nm23-H1S120G and nm23-H1P96S were similar to that by wild-type nm23-H1. The rate of phosphorylation of succinic thiokinase by nm23-H1S120 was similar to that by wild-type nm23-H1, and the rate of phosphorylation of succinic thiokinase by nm23-H1P96S was about half that by wild-type nm23-H1. Thus, the transfer of phosphate from nm23-H1 to aspartates or glutamates on other proteins appears to correlate better with the suppression of motility than does the transfer to histidines.