990 resultados para Glued laminated bamboo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current concern with the environment promotes the development of new technologies for production with use of alternative materials, from renewable resources, and changes in production processes, having as main objective the reduction of environmental impact. One of the alternatives for cleaner production is the use of castor oil derivatives instead of non-renewable sources, such as adhesives based on PVA (polyvinyl acetate), applied in the manufacturing process of glued laminated bamboo. Based on the versatility of the bamboo laminate and the castor oil, and from the perspective of sustainability, this study aims to contribute to the application of new materials and processes, used in the manufacturing industry, by proposing the use of the polyurethane adhesive based on castor oil for glued laminated bamboo manufacturing, which can later be used in the manufacture of several products. To verify the applicability of the polyurethane adhesive based on castor oil in the glued laminated bamboo manufacture, mechanical tests of traction and shearing of the glue sheet were performed in specimens of the said material, and the results were compared with the Cascorez 2590 and Waterbond adhesives. The results showed that the polyurethane adhesive based on castor oil, in the traction test, has superior performance than the Waterbond adhesive and slightly below than the Cascorez 2590 adhesive, but in the shear test, the polyurethane adhesive based on castor oil presented a slightly inferior performance than the other two adhesives used in the comparison.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of bamboo as construction and raw material for producing products can be considered a feasible alternative to the abusive use of steel, concrete and oil byproducts. Its use can also reduce the pressure on the use of wood from native and planted forests. Although there are thousands of bamboo species spread about the world and Brazil itself has hundreds of native species, the use and basic knowledge of its characteristics and applications are still little known and little disseminated. This paper's main objective is to introduce the species, the management phases, the physical and mechanical characteristics and the experiences in using bamboo in design and civil construction as per the Bamboo Project implemented at UNESP, Bauru campus since 1994. The results are divided into: a) Field activities - description of the technological species of interest, production chain flows, types of preservative treatments and clump management practices for the development, adaptation and production of different species of culms; b) Lab experiments - physical and mechanical characterization of culms processed as laminated strips and as composite material (glue laminated bamboo – glubam); c) Uses in projects - experiences with natural bamboo and glubam in design, architecture and civil construction projects. In the final remarks, the study aims to demonstrate, through practical and laboratory results, the material's multi-functionality and the feasibility in using bamboo as a sustainable material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The considerable amount of energy consumed on Earth is a major cause for not achieving sustainable development. Buildings are responsible for the highest worldwide energy consumption, nearly 40%. Strong efforts have been made in what concerns the reduction of buildings operational energy (heating, hot water, ventilation, electricity), since operational energy is so far the highest energy component in a building life cycle. However, as operational energy is being reduced the embodied energy increases. One of the building elements responsible for higher embodied energy consumption is the building structural system. Therefore, the present work is going to study part of embodied energy (initial embodied energy) in building structures using a life cycle assessment methodology, in order to contribute for a greater understanding of embodied energy in buildings structural systems. Initial embodied energy is estimated for a building structure by varying the span and the structural material type. The results are analysed and compared for different stages, and some conclusions are drawn. At the end of this work it was possible to conclude that the building span does not have considerable influence in embodied energy consumption of building structures. However, the structural material type has influence in the overall energetic performance. In fact, with this research it was possible that building structure that requires more initial embodied energy is the steel structure; then the glued laminated timber structure; and finally the concrete structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of the present work was to evaluate Pinus’ glued laminated timber (glulam) beams and steel reinforced glulam beams, using PU mono-component adhesive in lamination step and epoxy adhesive to bond steel bars. The mechanical performance was verified through bending test, and the adopted method based on homogenized section, to considerate the differences between wood and steel mechanical properties. The homogenization section method proved itself effective in obtaining the stiffness of the parts in MLCA. The stiffness of reinforced beams increased 91% in comparison with glulam beams, differing only 5.5 % from value of stiffness calculated

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to investigate the influence of storage time (0, 48 hours) of Pinus elliottii pieces and the tests to obtaining modulus of elasticity (static bending and transversal vibration) in glued laminated timber beams, produced with resorcinol based adhesive and 0.8 MPa compaction pressure. After pieces were properly prepared, part of them was used in immediate three manufacturing glulam beams, tested after adhesive cure, and part stored for 48 hours under a roof with a temperature of 25°C and relative humidity of 60% for subsequent manufacturing and testing three other glulam beams. Results of analysis of variance (ANOVA) revealed that the storage period was significant influence in modulus of elasticity obtained in static bending test (8% reduction from 0 to 48 hours). This not occurred with modulus of elasticity obtained by transversal vibration test (no significant influence). ANOVA results showed equivalence of means in both test procedures. New researches ire needed to better understand the investigated phenomenon, using new wood species, other storage conditions and a great number of samples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

En situación de incendio, los elementos estructurales de madera laminada encolada (?MLE?) sufren una degradación térmica que les lleva a una pérdida de sección portante. El Código Técnico de la Edificación cuantifica esta pérdida en 0,55 - 0,70 mm/min por cada cara sometida a carga, según especie y densidad, pero no propone una metodología específica para el cálculo de uniones carpinteras en situación de incendio. Para conocer el comportamiento de este tipo de uniones en situación de incendio, la Plataforma de Ingeniería de la Madera Estructural (PEMADE) de la Universidad de Santiago de Compostela, el Instituto de Ciencias de la Construcción Eduardo Torroja y el Centro Tecnológico CIDEMCO-Tecnalia han realizado conjuntamente una serie de ensayos experimentales sobre probetas ensambladas con unión carpintera del tipo cola de milano. Se han sometido las probetas a cargas térmicas variantes en el tiempo siguiendo la norma ISO 834-1, tal y como indica el CTE. Se registró usando termopares la variación de la temperatura a lo largo de la duración del ensayo. En este trabajo se expone en detalle la metodología desarrollada para realizar los ensayos, así como los primeros resultados obtenidos. In a fire event, glued laminated timber ("GLULAM") elements suffer a thermal degradation that produces in them a decrease of bearing section. Spanish technical building normative (?CTE?) quantify this decreasing from 0.55 to 0.70 mm / min according to species and density, but does not propose a specific methodology for calculating carpenter joints in a fire situation. In order to understand the behavior of such joints in a fire situation, the Platform for Structural Timber Engineering (PEMADE) of University of Santiago de Compostela; Institute of Science Construction Eduardo Torroja and Technology Center CIDEMCO-Tecnalia conducted together a series of experimental tests on glulam specimens assembled with a carpenter union type called ?dovetail?. Specimens were subjected to thermal loads varying in time according to ISO 834-1, as indicated by the CTE. Thermocouples were inserted in the specimens, recording the temperature variation along the length of the test. This paper details the methodology developed for the test and the first results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of the addition of bamboo laminas of the species Dendrocalamus giganteus to three-layer medium density particleboard (MDP). These laminas were glued onto both the top and the bottom of each panel. With the manufactured panels laminated with bamboo, mechanical tests based on the Brazilian Standard ABNT NBR 14810 were carried out to determine the modulus of rupture (MOR) in static bending and the tensile strength parallel-to-surface. These mechanical tests were realized in particleboards of eucalyptus and in reinforced particleboard, both produced in the laboratory. The modulus of rupture and tensile strength parallel-to-surface of the laminated MDP had values close to those that have been reported. The reinforcements increased the values of these studied properties. Nevertheless, this fact indicated the possibility to produce a stronger MDP using bamboo lamina as surface layers. These results show the possibility of using coatedbamboo MDP for utilization in large spans, for example, in flooring for mezzanines with finish on both sides, and for robust furniture as bookshelves, beds, tables, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)