52 resultados para Glucosinolates


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for the simultaneous determination of intact glucosinolates and main phenolic compounds (flavonoids and sinapic acid derivatives) in Brassica oleracea L. var. botrytis was proposed. A simplified sample extraction procedure and a UPLC separation were carried out to reduce the total time of analysis. Brassica oleracea samples were added with internal standards (glucotropaeolin and rutin), and extracted with boiling methanol. Crude extracts were evaporated under nitrogen, redissolved in mobile phase and analyzed by UPLC with double detection (ESI--MRM for glucosinolates and flavonoids, and DAD for main sinapic acid derivatives). The proposed method allowed a satisfactory quantification of main native sinapic acid derivatives, flavonoids and glucosinolates with a reduced time of analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The analysis of glucosinolates (GS) is traditionally performed by reverse-phase liquid chromatography coupled to ultraviolet detection after a time-consuming desulphation step, which is required for increased retention. Simpler and more efficient alternative methods that can shorten both sample preparation and analysis are much needed. OBJECTIVE: To evaluate the feasibility of using ultrahigh-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS) for the rapid profiling of intact GS. METHODOLOGY: A simple and short extraction of GS from Arabidopsis thaliana leaves was developed. Four sub-2 µm reverse-phase columns were tested for the rapid separation of these polar compounds using formic acid as the chromatographic additive. High-resolution QTOFMS was used to detect and identify GS. RESULTS: A novel charged surface hybrid (CSH) column was found to provide excellent retention and separation of GS within a total running time of 11 min. Twenty-one GS could be identified based on their accurate mass as well as isotopic and fragmentation patterns. The method was applied to determine the changes in GS content that occur after herbivory in Arabidopsis. In addition, we evaluated its applicability to the profiling of other Brassicaceae species. CONCLUSION: The method developed can profile the full range of GS, including the most polar ones, in a shorter time than previous methods, and is highly compatible with mass spectrometric detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary Plants often respond to pathogen or insect attack by inducing the synthesis of toxic compounds such as phytoalexins and glucosinolates (GS). The Arabidopsis mutant pad2-1 has reduced levels of the phytoalexin camalexin and is known for its increased susceptibility to fungal and bacterial pathogens. We found that pad2-1 is also more susceptible to the generalist insect Spodoptera littoralis but not to the specialist Pieris brassicae. The PAD2 gene encodes a gamma-glutamylcysteine synthetase that is involved in glutathione (GSH) synthesis, and consequently the pad2-1 mutant contains about 20% of the GSH found in wild-type plants. Lower GSH levels of pad2-1 were correlated with reduced accumulation of the two major indole and aliphatic GSs of Arabidopsis, indolyl-3-methyl-GS and 4-methylsulfinylbutyl-GS, in response to insect feeding. This effect was specific to GSH, was not complemented by treatment of pad2-1 with the strong reducing agent dithiothreitol, and was not observed with the ascorbate-deficient mutant vtc1-1. In contrast to the jasmonate-insensitive mutant coi1-1, expression of insect-regulated and GS biosynthesis genes was not affected in pad2-1. Our data suggest a crucial role for GSH in GS biosynthesis and insect resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosinolates (GLSs) are found in Brassica vegetables. Examples of these sources include cabbage, Brussels sprouts, broccoli, cauliflower and various root vegetables (e.g. radish and turnip). A number of epidemiological studies have identified an inverse association between consumption of these vegetables and the risk of colon and rectal cancer. Animal studies have shown changes in enzyme activities and DNA damage resulting from consumption of Brassica vegetables or isothiocyanates, the breakdown products (BDP) of GLSs in the body. Mechanistic studies have begun to identify the ways in which the compounds may exert their protective action but the relevance of these studies to protective effects in the human alimentary tract is as yet unproven. In vitro studies with a number of specific isothiocyanates have suggested mechanisms that might be the basis of their chemoprotective effects. The concentration and composition of the GLSs in different plants, but also within a plant (e.g. in the seeds, roots or leaves), can vary greatly and also changes during plant development. Furthermore, the effects of various factors in the supply chain of Brassica vegetables including breeding, cultivation, storage and processing on intake and bioavailability of GLSs are extensively discussed in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosinase in the conversion, in vivo, of glucosinolates into isothiocyanates was investigated in sixteen Fischer 344 rats. Glucosinolate hydrolysis in gnotobiotic rats harbouring a whole human faecal flora (Flora+) was compared with that in germ-free rats (Flora-). Rats were offered a diet where plant myrosinase was either active (Myro+) or inactive (Myro-). The conversion of prop-2-enyl glucosinolate and benzyl glucosinolate to their related isothiocyanates, allyl isothiocyanate and benzyl isothiocyanate, was estimated using urinary mercapturic acids, which are endproducts of isothiocyanate metabolism. The highest excretion of urinary mercapturic acids was found when only plant myrosinase was active (Flora-, Myro+ treatment). Lower excretion was observed when both plant and microbial myrosinases were active (Flora+, Myro+ treatment). Excretion of urinary mercapturic acids when only microbial myrosinase was active (Flora+, Myro- treatment) was low and comparable with the levels in the absence of myrosinase (Flora-, Myro- treatment). No intact glucosinolates were detected in the faeces of rats from the Flora+ treatments confirming the strong capacity of the microflora to break down glucosinolates. The results confirm that plant myrosinase can catalyse substantial release of isothiocyanates in vivo. The results also suggest that the human microflora may, in some circumstances, reduce the proportion of isothiocyanates available for intestinal absorption.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rocket species have been shown to have very high concentrations of glucosinolates and flavonols, which have numerous positive health benefits with regular consumption. In this review we highlight how breeders and processors of rocket species can utilize genomic and phytochemical research to improve varieties and enhance the nutritive benefits to consumers. Plant breeders are increasingly looking to new technologies such as HPLC, UPLC, LC-MS and GC-MS to screen populations for their phytochemical content to inform plant selections. Here we collate the research that has been conducted to-date in rocket, and summarise all glucosinolate and flavonol compounds identified in the species. We emphasize the importance of the broad screening of populations for phytochemicals and myrosinase degradation products, as well as unique traits that may be found in underutilized gene bank resources. We also stress that collaboration with industrial partners is becoming essential for long-term plant breeding goals through research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colorectal cancer is the third most prevalent cancer worldwide and the most common diet-related cancer, influenced by diets rich in red meat, low in plant foods and high in saturated fats. Observational studies have shown that fruit and vegetable intake may reduce colorectal cancer risks, although the precise bioactive components remain unclear. This review will outline the evidence for the role of polyphenols, glucosinolates and fibres against cancer progression in the gastrointestinal tract. Those bioactive compounds are considered protective agents against colon cancer, with evidence taken from epidemiological, human clinical, animal and in vitro studies. Various mechanisms of action have been postulated, such as the potential of polyphenols and glucosinolates to inhibit cancer cell growth and the actions of insoluble fibres as prebiotics and the evidence for these actions are detailed within. In addition, recent evidence suggests that polyphenols also have the potential to shift the gut ecology in a beneficial manner. Such actions of both fibre and polyphenols in the gastrointestinal tract and through interaction with gut epithelial cells may act in an additive manner to help explain why certain fruits and vegetables, but not all, act to differing extents to inhibit cancer incidence and progression. Indeed, a focus on the individual actions of such fruit and vegetable components, in particular polyphenols, glucosinolates and fibres is necessary to help explain which components are active in reducing gastrointestinal cancer risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The limited availability of foods that are free of pesticides has led Brazil to search for alternative production methods to meet the desires of consumers. Currently, organic cultivation represents a production system that complies with general expectations of producers and consumers. Organic cultivation is particularly interesting mainly because of its effect on plant secondary metabolite content, which may help plants to naturally combat pests; in humans, these substances can also contribute to the prevention of chronic diseases. We report on the extraction of glucosinolates (both as total glucosinolates and as benzylglucosinolate) with trifluoroacetic acid addition in a 70:30 MeOH:water (v/v). Total glucosinolates, determined by a thioglucosidase coupled assay, were measured in different Brassicaceae species and were similar to values reported in the literature. For broccoli, analyses were carried out separately on inflorescences, leaves and stalks; analyses were also conducted on thermally processed samples to simulate cooking. Furthermore, when the analysis was conducted on conventional and organic products, the highest concentrations of these substances were most often found in organically cultivated Brassicaceae. The benzylglucosinolate concentrations were evaluated on the same samples using HPLC. The concentration of benzylglucosinolate was significantly higher in organically cultivated vegetables, as well. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although slugs and snails play important roles in terrestrial ecosystems and cause considerable damage on a variety of crop plants, knowledge about the mechanisms of plant immunity to molluscs is limited. We found slugs to be natural herbivores of Arabidopsis thaliana and therefore investigated possible resistance mechanisms of this species against several molluscan herbivores. Treating wounded leaves with the mucus residue (‘slime trail’) of the Spanish slug Arion lusitanicus increased wound-induced jasmonate levels, suggesting the presence of defence elicitors in the mucus. Plants deficient in jasmonate biosynthesis and signalling suffered more damage by molluscan herbivores in the laboratory and in the field, demonstrating that JA-mediated defences protect A. thaliana against slugs and snails. Furthermore, experiments using A. thaliana mutants with altered levels of specific glucosinolate classes revealed the importance of aliphatic glucosinolates in defending leaves and reproductive structures against molluscs. The presence in mollusc faeces of known and novel metabolites arising from glutathione conjugation with glucosinolate hydrolysis products suggests that molluscan herbivores actively detoxify glucosinolates. Higher levels of aliphatic glucosinolates were found in plants during the night compared to the day, which correlated well with the nocturnal activity rhythms of slugs and snails. Our data highlight the function of well-known antiherbivore defence pathways in resistance against slugs and snails and suggest an important role for the diurnal regulation of defence metabolites against nocturnal molluscan herbivores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence indicates that cruciferous vegetables are protective against a range of cancers with glucosinolates and their breakdown products considered the biologically active constituents. To date, epidemiological studies have not investigated the intakes of these constituents due to a lack of food composition databases. The aim of the present study was to develop a database for the glucosinolate content of cruciferous vegetables that can be used to quantify dietary exposure for use in epidemiological studies of diet-disease relationships. Published food composition data sources for the glucosinolate content of cruciferous vegetables were identified and assessed for data quality using established criteria. Adequate data for the total glucosinolate content were available from eighteen published studies providing 140 estimates for forty-two items. The highest glucosinolate values were for cress (389 mg/100 g) while the lowest values were for Pe-tsai chinese cabbage (20 mg/100 g). There is considerable variation in the values reported for the same vegetable by different studies, with a median difference between the minimum and maximum values of 5.8-fold. Limited analysis of cooked cruciferous vegetables has been conducted; however, the available data show that average losses during cooking are approximately 36 %. This is the first attempt to collate the available literature on the glucosinolate content of cruciferous vegetables. These data will allow quantification of intakes of the glucosinolates, which can be used in epidemiological studies to investigate the role of cruciferous vegetables in cancer aetiology and prevention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Afin de pouvoir se défendre contre les insectes nuisibles, les plantes ont développé plusieurs stratégies leur permettant de maximiser leurs chances de survie et de reproduction. Parmi elles, les plantes sont souvent pourvues de barrières physiques telles que les poils urticants, les épines et la cuticule. En plus, les plantes sont capables de produire des protéines anti-digestives et des métabolites secondaires insecticides tels que la nicotine, les tannins ou les glucosinolates (GS). La mise en place de ces barrières physiques et chimiques comporte un coût énergétique au détriment de la croissance et de la reproduction. Par conséquent, en absence d'insectes, la plante investit la majeure partie de son énergie dans le développement et la croissance. A l'inverse, une blessure causée par un insecte provoquera une croissance ralentie, une augmentation de la densité de poils urticants ainsi que la synthèse de défenses chimiques. Au niveau moléculaire, cette défense inductible est régulée par l'hormone végétale acide jamsonique (AJ). En réponse à l'attaque d'un insecte, la plante produit cette hormone en grande quantité, ce qui se traduira par une forte expression de gènes de défense. Pendant ma thèse, j'ai essayé de découvrir quels étaient les facteurs de transcription (FT) responsables de l'expression des gènes de défense dans Arabidopsis thaliana. J'ai ainsi pu démontrer que des plantes mutées dans les FTs comme MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF13 et RRTF1 deviennent plus sensibles aux insects de l'espèce Spodoptera littoralis. Par la suite, j'ai également pu montrer que MYC2, MYC3 et MYC4 sont probablement la cible principale de la voie de signalisation du AJ et qu'ils sont nécessaires pour l'expression de la majorité des gènes de défense dont la plupart sont essentiels à la biosynthèse des GS. Une plante mutée simultanément dans ces trois protéines est par conséquent incapable de synthétiser des GS et devient hypersensible aux insectes. J'ai également pu démontrer que les GS sont uniquement efficaces contre les insectes généralistes tels S. littoralis et Heliothis virescens alors que les insectes spécialisés sur les Brassicaceae comme Pieris brassicae et Plutella xylostella se sont adaptés en développant des mécanismes de détoxification. - In response to herbivore insects, plants have evolved several defence strategies to maximize their survival and reproduction. For example, plants are often endowed with trichomes, spines and a thick cuticule. In addition, plants can produce anti-digestive proteins and toxic secondary metabolites like nicotine, tannins and glucosinolates (GS). These physical and chemical barriers have an energetic cost to the detriment of growth and reproduction. As a consequence, in absence of insects, plants allocate their energy to development and growth. On the contrary, an attack by herbivore insects will affect plant growth, increase trichome density and induce the production of anti-digestive proteins and secondary metabolites. At the molecular level, this inducible defence is regulated by the phytohormone jasmonic acid (JA). Thus, an attack by herbivores will be followed by a burst of JA that will induce the expression of defence genes. The aim of my thesis was to characterize which transcription factors (TF) regulate the expression of these defence genes in Arabidopsis thaliana. I could show that plants mutated in various TFs like MYC2, MYC3, MYC4, ZAT10, ZAT12, AZF2, WRKY18, WRKY40, WRKY6, ANAC019, ANAC55, ERF 13 and RRTFl were more susceptible to the herbivore Spodoptera littoralis. Furthermore, I could demonstrate that MYC2, MYC3 and MYC4 are probably the main target of the JA-signalling pathway and that they are necessary for the insect-mediated induction of most defence genes including genes involved in the biosynthesis of GS. A triple mutant myc2myc3myc4 is depleted of GS and consequently hypersensitive to insects. Moreover, I showed that GS are only efficient against generalist herbivores like S. littoralis and Heliothis virescens whereas specialized insects like Pieris brassicae and Plutella xylostella have evolved detoxification mechanisms against GS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fou8 loss of function allele of adenosine bisphosphate phosphatase FIERY1 results in numerous phenotypes including the increased enzymatic oxygenation of fatty acids and increased jasmonate synthesis. Here we show that the mutation causes also profound alterations of sulfur metabolism. The fou8 mutants possess lower levels of sulfated secondary compounds, glucosinolates, and accumulate the desulfo-precursors similar to previously described mutants in adenosine 5'phosphosulfate kinase. Transcript levels of genes involved in sulfate assimilation differ in fou8 compared to wild type Col-0 plants and are similar to plants subjected to sulfate deficiency. Indeed, independent microarray analyses of various alleles of mutants in FIERY1 showed similar patterns of gene expression as in sulfate deficient plants. This was not caused by alterations in signalling, as the fou8 mutants contained significantly lower levels of sulfate and glutathione and, consequently, of total elemental sulfur. Analysis of mutants with altered levels of sulfate and glutathione confirmed the correlation of sulfate deficiency-like gene expression pattern with low internal sulfate but not low glutathione. The changes in sulfur metabolism in fou8 correlated with massive increases in 3'-phosphoadenosine 5'-phosphate levels. The analysis of fou8 thus revealed that sulfate starvation response is triggered by a decrease in internal sulfate as opposed to external sulfate availability and that the presence of desulfo-glucosinolates does not induce the glucosinolate synthesis network. However, as well as resolving these important questions on the regulation of sulfate assimilation in plants, fou8 has also opened an array of new questions on the links between jasmonate synthesis and sulfur metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthetic tissues, the major food source of many invertebrates and vertebrates, are well defended. Many defence traits in leaves are controlled via the jasmonate signalling pathway in which jasmonate acts as a hormone by binding to a receptor to activate responses that lead to increased resistance to invertebrate folivores. We predicted that mutations in jasmonate synthesis might also increase the vulnerability of leaves to vertebrate folivores and tested this hypothesis using the Eastern Hermann's tortoise (Eurotestudo boettgeri) and an Arabidopsis thaliana (Brassicaceae) allene oxide synthase (aos) mutant unable to synthesize jasmonate. Tortoises preferred the aos mutant over the wild type (WT). Based on these results, we then investigated the effect of mutating jasmonate perception using a segregating population of the recessive A. thaliana jasmonate receptor mutant coronatine insensitive1-1 (coi1-1). Genotyping of these plants after tortoise feeding revealed that the homozygous coi1-1 receptor mutant was consumed more readily than the heterozygous mutant or the WT. Therefore, the plant's ability to synthesize or perceive jasmonate reduces feeding by a vertebrate herbivore. We also tested whether or not tortoise feeding behaviour was influenced by glucosinolates, the principal defence chemicals in Arabidopsis leaves with known roles in defence against many generalist insects. However, in contrast to what has been observed with such insects, leaves in which the levels of these compounds were reduced genetically were consumed at a similar rate to those of the WT.