940 resultados para Glucosephosphate dehydrogenase deficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic defect in the world. The most common clinical manifestations are acute hemolytic anemia associated with drugs, infections, neonatal jaundice and hemolytic non-spherocytic chronic anemia. The main aim of this study was to determine the frequency of major genetic variants of G6PD leading to enzyme deficiency in children from 0 to 14 years at a Pediatric Hospital in Luanda, Angola. A cross-sectional and descriptive analytical study covered a total of 194 children aged from 0 to 14 years, of both genders and hospitalized at the Pediatric Hospital David Bernardino, Luanda between November and December, 2011. The G202A, A376G and C563T mutations of the G6PD gene were determined by real-time PCR with Taqman probes. The disabled A-/A- genotype was detected in 10 girls (10.9%). Among the boys, 21 (20.6%) presented the genotype A-. Considering all the samples, the A- variant was observed in 22.4% of cases. The Mediterranean mutation was not detected in the Angolan sample. Furthermore, no association was found between genotype and anemia, nutritional state and mucosa color. A significant association, however, was observed with jaundice. Based on the results obtained, there is a clear need to identify those with the disabled genotype in the Angolan population in order to avoid cases of drug-induced anemia, particularly in the treatment of malaria, so prevalent in Angola.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

17β-hydroxysteroid dehydrogenase 10 (HSD10) deficiency is a rare X-linked inborn error of isoleucine catabolism. Although this protein has been genetically implicated in Alzheimer's disease pathogenesis, studies of amyloid-β peptide (Aβ) in patients with HSD10 deficiency have not been previously reported. We found, in a severely affected child with HSD10 deficiency, undetectable levels of Aβ in the cerebrospinal fluid, together with low expression of brain-derived neurotrophic factor, α-synuclein, and serotonin metabolites. Confirmation of these findings in other patients would help elucidating mechanisms of synaptic dysfunction in this disease, and highlight the role of Aβ in both early and late periods of life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common disorder leading to lactic acidemia. Phosphorylation of specific serine residues of the E1-alpha subunit of the PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We recently found that phenylbutyrate prevents phosphorylation of the E1-alpha subunit of the branched-chain ketoacid dehydrogenase complex (BCKDC) and reduces plasma concentrations of neurotoxic branched chain amino acids in patients with maple syrup urine disease (MSUD), due to the deficiency of BCKDC. We hypothesized that, similarly to BCKDC, phenylbutyrate enhances PDHC enzymatic activity by increasing the portion of unphosphorylated enzyme. To test this hypothesis, we treated wild-type human fibroblasts at different concentrations of phenylbutyrate and found that it reduces the levels of phosphorylated E1-alpha as compared to untreated cells. To investigate the effect of phenylbutyrate in vivo, we administered phenylbutyrate to C57B6 wild-type mice and we detected a significant increase in Pdhc enzyme activity and a reduction of phosphorylated E1-alpha subunit in brains and muscles as compared to saline treated mice. Being a drug already approved for human use, phenylbutyrate has great potential for increasing the residual enzymatic activity of PDHC and to improve the clinical phenotype of PDHC deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Adrenal ectopic tissue has been detected in the paragonadal region of normal women. In patients with congenital adrenal hyperplasia due to 21-hydroxylase (21-OH) deficiency, the manifestation of hyperplasia of paragonadal accessory adrenal tissue has been usually reported to occur in males. Probably, this is the first report of a female with 3beta-hydroxysteroid dehydrogenase (3beta-HSD) deficiency with ectopic adrenal tissue in ovaries. However, the occurrence of hyperplasia of adrenal rests among women with classical congenital adrenal hyperplasia may not be rare, especially among patients with a late diagnosis.2. We report a woman with 3beta-HSD deficiency whose definitive diagnosis was made late at 41 years of age immediately before surgery for the removal of a uterine myoma. During surgery, exploration of the abdominal cavity revealed the presence of bilateral accessory adrenal tissue in the ovaries and in the para-aortic region. The patient had extremely high levels of ACTH (137 pmol/l), DHEA (901.0 nmol/l), DHEA-S (55.9 mumol/l), androstenedione (70.2 nmol/l), testosterone (23.0 nmol/l) and 17alpha-hydroxypregnenolone (234.4 nmol/l) suggesting 3beta-HSD deficiency.3. In view of these elevated androgen levels, with an absolute predominance of DHEA and DHEA-S, we evaluated the effect of this hormonal profile on carbohydrate tolerance and insulin response to glucose ingestion.4. The patient presented normal glucose tolerance but her insulin response was lower than that of 14 normal women (area under the curve, 3beta-HSD = 17,680 vs 50,034 pmol/l for the control group over a period of 3 h after glucose ingestion).5. These results support recent data suggesting that patients with increased serum DHEA and DHEA-S levels do not present resistance to insulin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Introduction Toxoplasmosis, a zoonotic protozoal disease caused by toxoplasma gondii, is prevalent throughout the world, affecting a large proportion of persons who usually have no symptoms. Glucose 6 phosphate dehydrogenase deficiency, an X-linked inherited disorder, is present in over 400 million people world wide. It is more common in tropical and subtropical countries and is one of the important causes of hemolytic anemia. Case presentation This case report relates the occurrence of the two diseases simultaneously in a child of five years old. Conclusion Patients with glucose-6-phosphate dehydrogenase deficiency are more susceptible to toxoplasmosis and this case report, reinforce the findings of this propensity and alert us for such possibility, what it is important, therefore, the treatment of toxoplasmosis can cause serious hemolysis in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background During the Soviet era, malaria was close to eradication in Tajikistan. Since the early 1990s, the disease has been on the rise and has become endemic in large areas of southern and western Tajikistan. The standard national treatment for Plasmodium vivax is based on primaquine. This entails the risk of severe haemolysis for patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Seasonal and geographical distribution patterns as well as G6PD deficiency frequency were analysed with a view to improve understanding of the current malaria situation in Tajikistan. Methods Spatial and seasonal distribution was analysed, applying a risk model that included key environmental factors such as temperature and the availability of mosquito breeding sites. The frequency of G6PD deficiency was studied at the health service level, including a cross-sectional sample of 382 adult men. Results Analysis revealed high rates of malaria transmission in most districts of the southern province of Khatlon, as well as in some zones in the northern province of Sughd. Three categories of risk areas were identified: (i) zones at relatively high malaria risk with high current incidence rates, where malaria control and prevention measures should be taken at all stages of the transmission cycle; (ii) zones at relatively high malaria risk with low current incidence rates, where malaria prevention measures are recommended; and (iii) zones at intermediate or low malaria risk with low current incidence rates where no particular measures appear necessary. The average prevalence of G6PD deficiency was 2.1% with apparent differences between ethnic groups and geographical regions. Conclusion The study clearly indicates that malaria is a serious health issue in specific regions of Tajikistan. Transmission is mainly determined by temperature. Consequently, locations at lower altitude are more malaria-prone. G6PD deficiency frequency is too moderate to require fundamental changes in standard national treatment of cases of P. vivax.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: A false-positive sweat test in patients with deficiency of glucose-6-phosphate-1-dehydrogenase (EC 1.1.1.49; G6PD) is repeatedly reported. METHODS: Sweat chloride or conductivity was measured in 11 patients with G6PD deficiency. RESULTS: Mean (SD) chloride level (n = 8, median age 9.2 years, range 1.9-48.5) was 18.8 (9.6 mmol/l) and, mean (SD) sodium level was 26.0 (10.0 mmol/l), respectively, and mean (SD) conductivity (n = 3, median age 6.6 years, range 1.9-40.5) was 34.3 (6.5 mmol/l). CONCLUSION: In sweat of 11 patients with G6PD deficiency we did not find any abnormality. The reason for alleged false-positive sweat test in patients with G6PD deficiency is not known and we were unable to identify any original reference. It appears that tables of putative false-positive sweat tests in several disease states have been directly "copied and pasted" from one paper or textbook to another without verifying the original literature, a phenomenon one can call "chain citation".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Multiple acyl-CoA dehydrogenase deficiency- (MADD-), also called glutaric aciduria type 2, associated leukodystrophy may be severe and progressive despite conventional treatment with protein- and fat-restricted diet, carnitine, riboflavin, and coenzyme Q10. Administration of ketone bodies was described as a promising adjunct, but has only been documented once. METHODS We describe a Portuguese boy of consanguineous parents who developed progressive muscle weakness at 2.5 y of age, followed by severe metabolic decompensation with hypoglycaemia and coma triggered by a viral infection. Magnetic resonance (MR) imaging showed diffuse leukodystrophy. MADD was diagnosed by biochemical and molecular analyses. Clinical deterioration continued despite conventional treatment. Enteral sodium D,L-3-hydroxybutyrate (NaHB) was progressively introduced and maintained at 600 mg/kg BW/d (≈3% caloric need). Follow up was 3 y and included regular clinical examinations, biochemical studies, and imaging. RESULTS During follow up, the initial GMFC-MLD (motor function classification system, 0 = normal, 6 = maximum impairment) level of 5-6 gradually improved to 1 after 5 mo. Social functioning and quality of life recovered remarkably. We found considerable improvement of MR imaging and spectroscopy during follow up, with a certain lag behind clinical recovery. There was some persistent residual developmental delay. CONCLUSION NaHB is a highly effective and safe treatment that needs further controlled studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a frequent congenital human enzyme defect, is the most frequent cause of hemolytic anemia triggered by drugs or infectious diseases. Drugs which induce acute hemolysis in patients with G6PD deficiency are often used in anesthesia and perioperative pain therapy. Considering the fact that patients from geographic regions with a high prevalence of the disease are often treated in European hospitals, special attention should be paid to this problem. We report a case of a 30-year-old female patient with favism and review the disease and anesthesia-related implications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe jaundice leading to kernicterus or death in the newborn is the most devastating consequence of glucose-6-phosphate dehydrogenase (EC 1.1.1.49; G-6-PD) deficiency. We asked whether the TA repeat promoter polymorphism in the gene for uridinediphosphoglucuronate glucuronosyltransferase 1 (EC 2.4.1.17; UDPGT1), associated with benign jaundice in adults (Gilbert syndrome), increases the incidence of neonatal hyperbilirubinemia in G-6-PD deficiency. DNA from term neonates was analyzed for UDPGT1 polymorphism (normal homozygotes, heterozygotes, variant homozygotes), and for G-6-PD Mediterranean deficiency. The variant UDPGT1 promoter allele frequency was similar in G-6-PD-deficient and normal neonates. Thirty (22.9%) G-6-PD deficient neonates developed serum total bilirubin ≥ 257 μmol/liter, vs. 22 (9.2%) normals (P = 0.0005). Of those with the normal homozygous UDPGT1 genotype, the incidence of hyperbilirubinemia was similar in G-6-PD-deficients and controls (9.7% and 9.9%). In contrast, in the G-6-PD-deficient neonates, those with the heterozygous or homozygous variant UDPGT1 genotype had a higher incidence of hyperbilirubinemia than corresponding controls (heterozygotes: 31.6% vs. 6.7%, P < 0.0001; variant homozygotes: 50% vs. 14.7%, P = 0.02). Among G-6-PD-deficient infants the incidence of hyperbilirubinemia was greater in those with the heterozygous (31.6%, P = 0.006) or variant homozygous (50%, P = 0.003) UDPGT1 genotype than in normal homozygotes. In contrast, among those normal for G-6-PD, the UDPGT1 polymorphism had no significant effect (heterozygotes: 6.7%; variant homozygotes: 14.7%). Thus, neither G-6-PD deficiency nor the variant UDPGT1 promoter, alone, increased the incidence of hyperbilirubinemia, but both in combination did. This gene interaction may serve as a paradigm of the interaction of benign genetic polymorphisms in the causation of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta-Oxidation of long-chain fatty acids provides the major source of energy in the heart. Defects in enzymes of the beta-oxidation pathway cause sudden, unexplained death in childhood, acute hepatic encephalopathy or liver failure, skeletal myopathy, and cardiomyopathy. Very-long-chain acyl-CoA dehydrogenase [VLCAD; very-long-chain-acyl-CoA:(acceptor) 2,3-oxidoreductase, EC 1.3.99.13] catalyzes the first step in beta-oxidation. We have isolated the human VLCAD cDNA and gene and determined the complete nucleotide sequences. Polymerase chain reaction amplification of VLCAD mRNA and genomic exons defined the molecular defects in two patients with VLCAD deficiency who presented with unexplained cardiac arrest and cardiomyopathy. In one, a homozygous mutation in the consensus dinucleotide of the donor splice site (g+1-->a) was associated with universal skipping of the prior exon (exon 11). The second patient was a compound heterozygote, with a missense mutation, C1837-->T, changing the arginine at residue 613 to tryptophan on one allele and a single base deletion at the intron-exon 6 boundary as the second mutation. This initial delineation of human mutations in VLCAD suggests that VLCAD deficiency reduces myocardial fatty acid beta-oxidation and energy production and is associated with cardiomyopathy and sudden death in childhood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deficiência de glicose-6-fosfato desidrogenase em neonatos pode ser a responsável pela icterícia neonatal. Este comentário científico é decorrente do relato sobre o tema publicado neste fascículo e que preocupa diversos autores de outros países em relação às complicações em neonatos de hiperbilirrubinemia, existindo inclusive proposições de alguns autores em incluir o teste para identificar a deficiência de glicose-6-fosfato desidrogenase nos recém-nascidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an enzymopathy in which reduced NADPH concentrations are not maintained, resulting in oxidative damage. We evaluated G6PD activity, oxidative stress levels and Trolox equivalent antioxidant capacity in individuals with the A-(202G>A) mutation for G6PD deficiency. Five hundred and forty-four peripheral blood samples were screened for G6PD deficiency; we also analyzed lipid peroxidation products measured as thiobarbituric acid reactive species and Trolox equivalent antioxidant capacity. Men with the A-(202G>A) mutation had lower G6PD activity than women with the same mutation. Individuals with the A-(202G>A) mutation also differed in mean Trolox equivalent antioxidant capacity values but not for thiobarbituric acid reactive species values. We concluded that A-(202G>A) mutation is associated with reduced G6PD activity and increased Trolox equivalent antioxidant capacity. ©FUNPEC-RP.