889 resultados para Glucose uptake


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three series of novel glitazones were designed and prepared by using appropriate synthetic schemes to incorporate glycine, aromatic and alicyclic amines via two carbon linker. Compounds were synthesized both under conventional and microwave methods. Nineteen out of twenty four synthesized compounds were evaluated for their in vitro glucose uptake activity using isolated rat hemi-diaphragm. Compounds, 6, 9a, 13a, 13b, 13c, 13f and 13h exhibited significant glucose uptake activity. Illustration about their synthesis and in vitro glucose uptake activity is described along with the structure activity relationships. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle (SKM) is the most important tissue in maintaining glucose homeostasis and impairments in this tissue leads to insulin resistance (IR). Activation of 5’ AMP-activated kinase (AMPK) is viewed as a targeted approach to counteract IR. Rosemary extract (RE) has been reported to decrease blood glucose levels but its effects on SKM are not known. We hypothesized that RE acts directly on SKM to increase glucose uptake (GU). We found an increase in GU (184±5.07% of control, p<0.001) in L6 myotubes by RE to levels similar to insulin and metformin. Carnosic acid (CA) and rosmarinic acid (RA), major polyphenols found in RE, increased GU. RE, CA, and RA significantly increased AMPK phosphorylation and their effects on GU was reduced by an AMPK inhibitor. Our study is the first to show a direct effect of RE, CA and RA on SKM GU by a mechanism that involves AMPK activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal- (0.5% Na+; NS), high- (3.12% Na+; HS), or low-sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail-cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin-stimulated 2-deoxy-d-[H-3]-glucose uptake (2DGU) and conversion of -[U-C-14]-glucose into (CO2)-C-14. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole-body insulin sensitivity. A higher half-maximal effective insulin concentration (EC50) from the dose - response curve of 2DGU and an increase in the insulin-stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin-induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulin-induced glucose uptake by skeletal muscle results from Akt2 activation and is severely impaired during insulin resistance Recently, we and others have demonstrated that BMP9 improves glucose homeostasis in diabetic and non-diabetic rodents. However, the mechanism by which BMP9 modulates insulin action remains unknown. Here we demonstrate that Smad5. a transcription factor activated by BMP9, and Akt2. are upregulated in differentiated L6 myotubes. Smad5, rather than Smad1/8, is downregulated ""in vivo"" and ""in vitro"" by dexamethasone Smad5 knockdown decreased Akt2 expression and serine phosphorylation and insulin-induced glucose uptake, and increased the expression of the lipid phosphatase Ship2. Additionally, binding of Smad5 to Akt2 gene is decreased in dexamethasone-treated rats and Increased in L6 myotubes compared to myoblasts The present study indicates that Smad5 regulates glucose uptake in skeletal muscle by controlling Akt2 expression and phosphorylation These finding reveals Smad5 as a potential target for the therapeutic of type 2 diabetes. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma cruzi, the agent of Chagas` disease, alternates between different morphogenetic stages that face distinct physiological conditions in their invertebrate and vertebrate hosts, likely in the availability of glucose. While the glucose transport is well characterized in epimastigotes of T cruzi, nothing is known about how the mammalian stages acquire this molecule. Herein glucose transport activity and expression were analyzed in the three developmental stages present in the vertebrate cycle of T cruzi. The infective trypomastigotes showed the highest transport activity (V(max) = 5.34 +/- 0.54 nmol/min per mg of protein: K(m) = 0.38 +/- 0.01 mM) when compared to intracellular epimastigotes (V(max) = 2.18 +/- 0.20 nmol/min per mg of protein; K(m) = 0.39 +/- 0.01 mM). Under the conditions employed no transport activity could be detected in amastigotes. The gene of the glucose transporter is expressed at the mRNA level in trypomastigotes and in intracellular epimastigotes but not in amastigotes, as revealed by real-time PCR. In both trypomastigotes and intracellular epimastigotes protein expression could be detected by Western blot with an antibody raised against the glucose transporter correlating well with the transport activity measured experimentally. Interestingly, anti-glucose transporter antibodies showed a strong reactivity with glycosome and reservosome organelles. A comparison between proline and glucose transport among the intracellular differentiation forms is presented. The data suggest that the regulation of glucose transporter reflects different energy and carbon requirements along the intracellular life cycle of T cruzi. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oocyte-secreted factors (OSFs) regulate differentiation of cumulus cells and are of pivotal relevance for fertility. Bone morphogenetic protein 15 (BMP15) and fibroblast growth factor 10 (FGF10) are OSFs and enhance oocyte competence by unknown mechanisms. We tested the hypothesis that BMP15 and FGF10, alone or combined in the maturation medium, enhance cumulus expansion and expression of genes in the preovulatory cascade and regulate glucose metabolism favouring hyaluronic acid production in bovine cumulus-oocyte complexes (COCs). BMP15 or FGF10 increased the percentage of fully expanded COCs, but the combination did not further stimulate it. BMP15 increased cumulus cell levels of mRNA encoding a disintegrin and metalloprotease 10 (ADAM10), ADAM17, amphiregulin (AREG), and epiregulin (EREG) at 12 h of culture and of prostaglandin (PG)-endoperoxide synthase 2 (PTGS2), pentraxin 3 (PTX3) and tumor necrosis factor alpha-induced protein 6 (TNFAIP6 (TSG6)) at 22 h of culture. FGF10 did not alter the expression of epidermal growth factor-like factors but enhanced the mRNA expression of PTGS2 at 4 h, PTX3 at 12 h, and TNFAIP6 at 22 h. FGF10 and BMP15 stimulated glucose consumption by cumulus cells but did not affect lactate production or levels of mRNA encoding glycolytic enzymes phosphofructokinase and lactate dehydrogenase A. Each growth factor increased mRNA encoding glucosamine:fructose-6-PO4 transaminases, key enzymes in the hexosamine pathway leading to hyaluronic acid production, and BMP15 also stimulated hyaluronan synthase 2 (HAS2) mRNA expression. This study provides evidence that BMP15 and FGF10 stimulate expansion of in vitro-matured bovine COCs by driving glucose metabolism toward hyaluronic acid production and controlling the expression of genes in the ovulatory cascade, the first acting upon ADAM10, ADAM17, AREG, and EREG and the second on downstream genes, particularly PTGS2. © 2013 Society for Reproduction and Fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focused on understanding the signaling mechanisms leading to GLUT-4 translocation and increased skeletal-muscle glucose uptake that follow creatine (Cr) supplementation in type 2 diabetes (n = 10). AMPK-alpha protein content presented a tendency to be higher (p = 0.06) after Cr supplementation (5 g/d for 12w). The changes in AMPK-alpha protein content significantly related (p < 0.001) to the changes in GLUT-4 translocation (r = 0.78) and Hb1Ac levels (r = -0.68), suggesting that AMPK signaling may be implicated in the effects of supplementation on glucose uptake in type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statins exert anti-inflammatory, anti-atherogenic actions. The mechanisms responsible for these effects remain only partially elucidated. Diabetes and obesity are characterized by low-grade inflammation. Metabolic and endocrine adipocyte dysfunction is known to play a crucial role in the development of these disorders and the related cardiovascular complications. Thus, direct modulation of adipocyte function may represent a mechanism of pleiotropic statin actions. We investigated effects of atorvastatin on apoptosis, differentiation, endocrine, and metabolic functions in murine white and brown adipocyte lines. Direct exposure of differentiating preadipocytes to atorvastatin strongly reduced lipid accumulation and diminished protein expression of the differentiation marker CCAAT/enhancer binding protein-beta (CEBP-beta). In fully differentiated adipocytes, however, lipid accumulation remained unchanged after chronic atorvastatin treatment. Furthermore, cell viability was reduced in response to atorvastatin treatment in proliferating and differentiating preadipocytes, but not in differentiated cells. Moreover, atorvastatin induced apoptosis and inhibited protein kinase B (AKT) phosphorylation in proliferating and differentiating preadipocytes, but not in differentiated adipocytes. On the endocrine level, direct atorvastatin treatment of differentiated white adipocytes enhanced expression of the pro-inflammatory adipokine interleukin-6 (IL-6), and downregulated expression of the insulin-mimetic and anti-inflammatory adipokines visfatin and adiponectin. Finally, these direct adipotropic endocrine effects of atorvastatin were paralleled by the acute inhibition of insulin-induced glucose uptake in differentiated white adipocytes, while protein expression of the thermogenic uncoupling protein-1 (UCP-1) in brown adipocytes remained unchanged. Taken together, our data for the first time demonstrate direct differentiation state-dependent effects of atorvastatin including apoptosis, modulation of pro-inflammatory and glucostatic adipokine expression, and insulin resistance in adipose cells. These differential interactions may explain variable clinical observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent experimental evidence has focused attention to the role of two molecules, insulin receptor substrate 1 (IRS-1) and phosphatidylinositol 3-kinase (PI3-kinase), in linking the insulin receptor to glucose uptake; IRS-1 knockout mice are insulin resistant, and pharmacological inhibitors of PI3-kinase block insulin-stimulated glucose uptake. To investigate the role of PI3-kinase and IRS-1 in insulin-stimulated glucose uptake we examined whether stimulation of insulin-sensitive cells with platelet-derived growth factor (PDGF) or with interleukin 4 (IL-4) stimulates glucose uptake; the activated PDGF receptor (PDGFR) directly binds and activates PI3-kinase, whereas the IL-4 receptor (IL-4R) activates PI3-kinase via IRS-1 or the IRS-1-related molecule 4PS. We found that stimulation of 3T3-L1 adipocytes with PDGF resulted in tyrosine phosphorylation of the PDGFR and activation of PI3-kinase in these cells. To examine whether IL-4 stimulates glucose uptake, L6 myoblasts were engineered to overexpress GLUT4 as well as both chains of the IL-4R (L6/IL-4R/GLUT4); when these L6/IL-4R/GLUT4 myoblasts were stimulated with IL-4, IRS-1 became tyrosine phosphorylated and associated with PI3-kinase. Although PDGF and IL-4 can activate PI3-kinase in the respective cell lines, they do not possess insulin's ability to stimulate glucose uptake and GLUT4 translocation to the plasma membrane. These findings indicate that activation of PI3-kinase is not sufficient to stimulate GLUT4 translocation to the plasma membrane. We postulate that activation of a second signaling pathway by insulin, distinct from PI3-kinase, is necessary for the stimulation of glucose uptake in insulin-sensitive cells.