19 resultados para Glucomannan


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prebiotic potential of a konjac glucomannan hydrolysate (GMH) was investigated in vitro using batch cultures inoculated with human faeces. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation (FISH), and short chain fatty acid (SCFA) production was monitored by gas chromatography. The populations of Bifidobacterium genus, Lactobacillus–Enterococcus group and the Atopobium group all significantly increased after GMH and inulin fermentation. The Bacteroides–Prevotella group had a lower end population after GMH fermentation while inulin gave an increase, although these differences were not significant. No significant differences in SCFA concentrations were observed between inulin and GMH. As with inulin, GMH produced selective stimulation of beneficial gut microbiota and a favourable SCFA profile. In order to confirm a beneficial effect of GMH further in vivo studies involving healthy human volunteers should be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbohydrates may provide an alternative therapeutic approach for a number of digestive health disorders such as inflammatory bowel disease (IBD). The aim of this work was to characterise the tolerance and efficacy of low and high molecular weight konjac glucomannan hydrolysates within healthy volunteers and patients suffering from IBD and associated gut conditions. These conditions included constipation, Crohn's disease and ulcerative colitis. For general tolerance, fourteen patients participated whilst for the digestive disorder trial, there were twenty. Scores of taste/texture of the product, bowel movement, stool consistency, diarrhoea, existence/absence of blood in the faeces, abdominal pains, flatulence, vomiting, fever, improvement of life style after use, willingness to use in the future and clinician's statements about each patient's conditions before and after use were recorded. The results showed that the hydrolysates were tolerated well for patients with diarrhoea and had a significant improvement on bowel movement, stool consistency, abdominal pain and flatulence after ten days. With respect to effects on IBD, there was a significant health benefit after fourteen days of consumption for bowel movement, stool consistency, diarrhoea, existence/absence of blood in the faeces, abdominal pain, flatulence and vomiting. Most patients declared an improvement of their life style after consuming the hydrolysates. The use of konjac glucomannan hydrolysates as a therapeutic agent or adjunct to standard treatments could prove a successful tool for the treatment of a range of disorders; although large scale studies are required to characterise further the role of the carbohydrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Konjac glucomannan - tungsten (KGM-T) gels were successfully prepared under DC electric fields, in the presence of sodium tungstate. The textural properties and microstructure of the gels were investigated by Texture Analyzer, Rheometer and SEM. Based on the response surface methodology (RSM) results, the optimum conditions for KGM-T gel springiness is 0.32% sodium tungstate concentration, 0.54% KGM concentration, 24.66V voltage and 12.37min treatment time. Under these conditions, the maximum springiness value of KGM-T gel is 1.21mm. Steady flow measurement indicated that KGM-T gel showed characteristic non-Newtonian pseudoplastic behaviour, with low flow behaviour indexes in the shear thinning region. SEM demonstrated the porosity of the freeze-dried samples. These findings may pave the way to use DC electric fields for the design and development of KGM gels and to apply KGM gels for practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emulsiokalvolla tarkoitetaan kalvoa, joka on valmistettu haihduttamalla ylimääräinen vesi pois emulsiosta. Polysakkaridipohjainen emulsiokalvo koostuu kalvonmuodostuspolysakkaridista, rasvasta, emulgointiaineesta ja pehmittimestä. Kirjallisuusosassa selvitettiin, mitä raaka-aineita polysakkaridipohjaisissa emulsiokalvoissa käytetään ja mitkä tekijät vaikuttavat emulsiokalvojen vesihöyrynläpäisevyyteen ja mekaanisiin ominaisuuksiin. Tutkimuksen kokeellisen osan tavoitteena oli selvittää, miten konjac-glukomannaani (KGM) ja kuusen galaktoglukomannaani (GGM) soveltuvat emulsiokalvon raaka-aineiksi. Lisäksi selvitettiin, miten rasvan tyyppi ja rasvapitoisuus vaikuttavat GGM-KGM-pohjaisten emulsiokalvojen mekaanisiin ominaisuuksiin ja vesihöyrynläpäisevyyteen. Mehiläisvahasta, mäntyöljystä ja rypsiöljystä valmistettiin emulsiokalvot, joissa oli 30 %:n (paino-% GGM:sta) rasvapitoisuudet. Lisäksi mehiläisvahasta valmistettiin emulsiokalvot, joissa oli 10 ja 50 % mehiläisvahaa. Emulsiokalvoja verrattiin vertailukalvoon, jossa ei ollut rasvaa. Kalvoissa käytetty KGM:n ja GGM:n suhde oli 1:1. Kalvoista mitattiin vesihöyrynläpäisevyys ja -läpäisynopeus, vetolujuus, Youngin moduuli ja murtovenymä. Näiden lisäksi kalvojen poikkileikkaus kuvattiin pyyhkäisyelektronimikroskoopilla. GGM ja KGM soveltuvat emulsiokalvon raaka-aineiksi. Huoneenlämpötilassa kuivatuista kalvoista saatiin tasaisemman näköisiä kuin lämpökaapissa kuivatuista. Pyyhkäisyelektronimikroskooppikuvissa vahapisarat olivat öljypisaroita pienempiä, mikä mahdollisesti vaikutti siihen, että vahapisarat pysyivät paremmin kiinnittyneenä kalvomatriisissa. Öljypisaroiden koko oli kalvoissa noin 10 ?m ja vahapisaroiden 2–6 ?m. Vesihöyrynläpäisynopeus oli pienin 50 %:n mehiläisvahakalvolla (p < 0,05). Vesihöyrynläpäisevyys laski lineaarisesti mehiläisvahapitoisuuden suurentuessa. Öljykalvot ja 10 %:n mehiläisvahakalvo eivät eronneet tilastollisesti merkitsevästi vesihöyrynläpäisevyyden suhteen vertailukalvosta. Pienin vetolujuus ja Youngin moduuli oli 50 %:n mehiläisvahakalvolla. Vertailukalvo oli kestävin ja jäykin. Murtovenymän suhteen kalvot eivät eronneet toisistaan tilastollisesti merkitsevästi. Tutkimuksessa onnistuttiin valmistamaan GGM-KGM-pohjaisia emulsiokalvoja, jotka pidättivät vesihöyryä vertailukalvoa paremmin ja silti säilyttivät mekaaniset ominaisuutensa kohtuullisen hyvin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以葡甘聚糖为试材,运用分子模拟同仪器分析相结合的手段,预测了葡甘聚糖分子链的高级结构,分析了无机分子对其结构、性能的影响,探讨了葡甘聚糖与卡拉胶微观作用机理。 主要研究内容与结果如下: 1. 葡甘聚糖单链高级结构的预测 利用Hyperchem7.0、VM2.0分子结构计算软件采用分子动力学和分子力学的方法,以真空中葡甘聚糖单链为研究模型,研究了聚合度、取代基对动态构象的影响及影响链构象的作用力。首次提出了KGM链的动态模型,得到了以下结果:聚合度影响其链形态和稳定性,对于高聚合度的魔芋葡甘聚糖来说,其链呈现无规卷曲状态且稳定性下降,在整个动态运动过程中KGM链脱乙酰基前后都呈现无规卷曲状态,而且其伸展和卷曲的变化是周期性的,表现出了很好的柔性,说明乙酰基不是影响其链形态的主要因素,二面角能和静电作用是真空中影响单链构象的主要的键合作用力和非键合作用力,但是乙酰基对氢键作用的影响较大。 2. 无机分子对葡甘聚糖溶液体系结构性能影响的研究 利用Hyperchem7.0分子结构计算软件,采用分子动力学及红外光谱、核磁共振等技术,对无机分子对葡甘聚糖体系的影响进行分析,很好的解释了性能变化的结构原因,结合以往的研究及参考文献得出以下结论:KGM在碱性条件下由于化学作用乙酰基的脱除分子间氢键作用的加强提高了凝胶强度,分子间氢键的主要作用位点是葡萄糖 的O(6)与甘露糖的O(2)之间;硼与KGM形成的分子内和分子间配合作用及分子间作用力氢键的增强是KGM特性粘度和致密性提高的主要原因,分子间型配位反应发生在葡萄糖和甘露糖两个糖环之间的几率最大;加入尿素后,表现为宏观性能的下降,葡甘聚糖氢键网络被破坏,氢键的作用位点由甘露糖的O(2)、O(3)变为O(4),葡萄糖的O(3)、O(6)变为O(1)、O(2)。 3. 葡甘聚糖与卡拉胶共混作用的研究 利用Hyperchem7.0分子结构计算软件运用分子动力学方法、DSC、红外光谱技术,研究了葡甘聚糖与卡拉胶的微观结构及作用过程,揭示了性能变化的结构原因和分子之间的作用位点。得出了以下结论:葡甘聚糖同卡拉胶共混后通过分子间氢键作用形成了强度高、弹性好的热可逆凝胶。其凝胶强度与单一胶相比较,凝胶特性得到了很大的改善。通过红外光谱可以发现形成复合溶胶后化学基团没有发生本质上的改变,但是氢键缔合作用增强;通过DSC分析可以发现仅出现1个吸热峰,两种生物大分子达到了相容的结果,经过分子动力学模拟表明,与单一体系比较,葡甘聚糖与卡拉胶共混时稳定性提高,分子间氢键作用力明显增强,主要的作用位点是葡甘聚糖的上甘露糖的O(2)、O(4)、O(6)、乙酰基位置及卡拉胶上糖环上的 O(6)、硫酸基。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文由三章组成。第一章介绍了中药蜘蛛香的化学成分的研究成果,第二章为羧甲基魔芋葡苷聚糖-壳聚糖为细胞膜的天冬酰胺酶人工细胞的研究,第三章综述了人工细胞在生物医学领域的应用。 第一章报道了中药蜘蛛香(Valeriana wallichii)根部乙醇提取物的化学成分,采用正、反相硅胶层析等分离方法和MS、NMR等多种波谱手段,从中共分离鉴定出17个化合物,分别为缬草素(valtrate,1),valechlorine(2),homobadrinal(3),baldrinal(4),乙酰缬草素(acevaltrate 5),valeriotetrate C(6),valeriotetrate B(7),对羟基苯乙酮(4'-hydroxy-acetophenone 8),7-hydroxy valtrate(9),8-methylvalepotriate(10),1,5-dihydroxy-3,8-epoxyvalechlorine A(11),二氢缬草素(didrovaltrate 12),胡萝卜苷(13),橙皮苷 (hesperidin 14),prinsepiol-4-O-β-D-glucopyranoside(15),longiflorone(16),乙基糖苷(17)。其中化合物6、7、10、和11为新化合物,化合物9、15、16为首次从该植物中得到。新化合物11为含有氯原子的刚性骨架环烯醚萜,并且确定了其绝对构型。 第二章报道了以羧甲基魔芋葡苷聚糖(CKGM)和壳聚糖(CS)为膜的固定化L-天冬酰胺酶人工细胞研究成果。利用羧甲基魔芋葡苷聚糖和壳聚糖两种生物相容性很好的天然多糖之间的静电吸引力,在非常温和的条件下制备成具有半透过性膜的人工细胞,将治疗儿童急性成淋巴细胞性白血病(ALL)的药物L-天冬酰胺酶包裹在内。通过考察温度和pH对人工细胞的影响,结果表明以CKGM- CS为膜的L-天冬酰胺酶人工细胞对温度和pH的稳定性和耐受性均高于自由酶,说明CKGM-CS对酶具有保护作用,而且小分子底物和产物可以自由进出膜内外,而包裹在膜内的生物大分子则不能泄露出来。 第三章综述了微囊化人工细胞的研究进展。 This dissertation consists of three parts. In the first part, the chemical constituents from the root of Valeriana wallichii were reported. In the second part, preparation and characteristics of L-Asparaginase Artificial cell were reported. The third part is a review on progress of microcapsule artificial cell. The first chapter is about the isolation and identification of the chemical constituents from the root of V. wallichii. Seventeen compounds were isolated from the ethanol extract of roots of V. wallichii through repeated column chromatography on normal and reversed phase silica gel. By the spectroscopic and chemical evidence, their structures were elucidated as valtrate (1), valechlorine (2), homobadrinal (3), baldrinal (4), acevaltrate (5), valeriotetrate C (6), valeriotetrate B (7), 4'-hydroxy-acetophenone (8), 7-hydroxy valtrate (9), 8-methylvalepotriate (10), 1,5-dihydroxy-3,8-epoxyvalechlorine A (11), didrovaltrate (12), daucosterol (13), hesperidin (14), prinsepiol-4-O-β-D-glucopyranoside (15), longiflorone (16), and ethyl glucoside (17). Among them, 6, 7, 10, and 11 are new compounds. 15, 16 and 9 were isolated from this plant for the first time. The absolute configuration of compound 11, an unusual iridoid bearing a C-10 chlor-group and an oxo-bridge connecting C-3 and C-8 resulting in a rigid skeleton, was confirmed. The second chapter is about the semi-permeable microcapsule of carboxymethyl konjac glucomannan-chitosan for L-asparaginase immobilization. Carboxymethyl konjac glucomannan-chitosan (CKGM-CS) microcapsules, which have good biocompatibility, prepared under very mild conditions via polyelectrostatic complexation, were used for immobilize L-asparaginase-a kind of drug for acute lymphoblastic leukemia (ALL). The activity and stability under different temperature and pH of the enzyme loaded-microcapsules were studied. The results indicated the immobilized enzyme has better stability and activity contrasting to the native enzyme. The study illustrates that the L-asparaginase could be protected in CKGM-CS microcapsules, the substrate and product could pass through the system freely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starches are a source of digestible carbohydrate and are frequently used in formulated food products in the presence of other carbohydrates, proteins and fat. This thesis explored the effect of addition of neutral (Konjac glucomannan) or charged (milk proteins) polymers on the physical characteristics and digestion kinetics of waxy maize starch. The aim was to identify mechanisms to modulate the pasting properties and subsequent susceptibility to amylolytic digestion. Addition of αs- or β-caseinate protein fractions to waxy maize starch restricted granular swelling during gelatinisation, increasing granule integrity. It was shown that, while β-caseinate can adsorb to starch granules during pasting, αscaseinate can be absorbed into maize starch granules. The resultant effect was a reduction in granule size after heating, more intact granules and a subsequent decrease in starch digestion in vitro as determined by analysis of reducing sugars. The ability of αs-caseinate to reduce the level of amylolytic digestion was confirmed through in vivo pig (Teagasc, Moorepark) and human (University of Surrey, UK) trials. The scope of the thesis extended to the development of a new automated cell for attachment to a rheometer to measure digestion kinetics of starch-protein mixtures. In conclusion, the thesis offers new approaches to modulation of the physical characteristics of unmodified starch during gelatinisation and suggests that the type of protein and/or polysaccharide used in starch-based food systems may influence the ability of the food to modulate glycemia. This is an important consideration in the design of foods with positive health benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Ciências Biomédicas, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transcriptome of the developing starchy endosperm of hexaploid wheat (Triticum aestivum) was determined using RNA-Seq isolated at five stages during grain fill. This resource represents an excellent way to identify candidate genes responsible for the starchy endosperm cell wall, which is dominated by arabinoxylan (AX), accounting for 70% of the cell wall polysaccharides, with 20% (1,3; 1,4)-beta-D-glucan, 7% glucomannan, and 4% cellulose. A complete inventory of transcripts of 124 glycosyltransferase (GT) and 72 glycosylhydrolase (GH) genes associated with cell walls is presented. The most highly expressed GT transcript (excluding those known to be involved in starch synthesis) was a GT47 family transcript similar to Arabidopsis (Arabidopsis thaliana) IRX10 involved in xylan extension, and the second most abundant was a GT61. Profiles for GT43 IRX9 and IRX14 putative orthologs were consistent with roles in AX synthesis. Low abundances were found for transcripts from genes in the acyl-coA transferase BAHD family, for which a role in AX feruloylation has been postulated. The relative expression of these was much greater in whole grain compared with starchy endosperm, correlating with the levels of bound ferulate. Transcripts associated with callose (GSL), cellulose (CESA), pectin (GAUT), and glucomannan (CSLA) synthesis were also abundant in starchy endosperm, while the corresponding cell wall polysaccharides were confirmed as low abundance (glucomannan and callose) or undetectable (pectin) in these samples. Abundant transcripts from GH families associated with the hydrolysis of these polysaccharides were also present, suggesting that they may be rapidly turned over. Abundant transcripts in the GT31 family may be responsible for the addition of Gal residues to arabinogalactan peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to compare alginate and pectin beads for improving the survival of Lactobacillus plantarum and Bifidobacterium longum during storage in pomegranate and cranberry juice, and to evaluate the influence of various coating materials, including chitosan, gelatin and glucomannan on cell survival and on the size and hardness of the beads. In pomegranate juice, free cells of L. plantarum died within 4 weeks of storage and those of B. longum within 1 week; in cranberry juice both types of cells died within one week. Encapsulation within either alginate or pectin beads improved cell survival considerably, but coating of the beads with chitosan or gelatin improved it even further; coating with glucomannan did not have any positive effect. The double gelatin coated pectin beads gave the highest protection among all types of beads, as a final concentration of approximately 108 CFU/mL and 106 CFU/mL for both L. plantarum and B. longum was obtained after 6 weeks of storage in pomegranate and cranberry juice, respectively. The good protection could be attributed to the very strong interaction between the two polymers, as measured by turbidity experiments, leading to the formation of a polyelectrolyte complex. It was also shown that the coating was able to inhibit the penetration of gallic acid within the beads, which was used in this study as a model phenolic compound with antimicrobial activity; this is a likely mechanism through which the beads were able to protect the cells from the antimicrobial activity of phenolic compounds present in both types of juices. Despite their good protective effect, the pectin beads were considerably softer than the alginate beads, an issue that should be addressed in order to increase their mechanical stability.