912 resultados para Glucagon-like insulinotropic peptide
Resumo:
The addition of oligofructose as a dietary fiber decreases the serum concentration and the hepatic release of VLDL-triglycerides in rats. Because glucose, insulin, insulin-like growth factor I (IGF-I) and gut peptides [i.e., glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)]) are factors involved in the metabolic response to nutrients, this paper analyzes their putative role in the hypolipidemic effect of oligofructose. Male Wistar rats were fed a nonpurified diet with or without 10% oligofructose for 30 d. Glucose, insulin, IGF-I and GIP concentrations were measured in the serum of rats after eating. GIP and GLP-1 contents were also assayed in small intestine and cecal extracts, respectively. A glucose tolerance test was performed in food-deprived rats. Serum insulin level was significantly lower in oligofructose-fed rats both after eating and in the glucose tolerance test, whereas glycemia was lower only in the postprandial state. IGF-I serum level did not differ between groups. GIP concentration was significantly higher in the serum of oligofructose-fed rats. The GLP-1 cecal pool was also significantly higher. In this study, we have shown that cecal proliferation induced by oligofructose leads to an increase in GLP-1 concentration. This latter incretin could be involved in the maintenance of glycemia despite a lower insulinemia in the glucose tolerance test in oligofructose-fed rats. We discuss also the role of hormonal changes in the antilipogenic effect of oligofructose.
Resumo:
Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid in-activation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His(7)-modified analogue of GLP-1, N-pyroglutamyl-GLP-1, as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1 (9-36),amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32(.)9 and 6(.)7 nM, respectively) compared with native GLP-1 (IC50 0(.)37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16(.)3 and 27 nM respectively compared with GLP-1 (EC50 4(.)7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5(.)6 mM glucose (P
Resumo:
Aging is associated with an increased incidence of glucose intolerance and type 2 diabetes. Glucagon-like peptide-1 (GLP-1) is an important insulinotropic peptide secreted from the gastrointestinal tract in response to nutrient absorption. The present study was designed to assess the sub-chronic glucose regulatory effects of the potent long-acting GLP-1 receptor agonist, (Val(8))GLP-1, in aging 45-49 week old mice. Daily injection of (Val$)GLP-1 (25 nmol/kg body weight) for 12 days had no significant effect on food intake, body weight, non-fasting plasma glucose and insulin concentrations. However, after 12 days, the glycaemic response to intraperitoneal glucose was improved (P <0.05) in (Val(8))GLP-1 treated mice. In keeping with this, glucose-mediated insulin secretion was enhanced (P <0.05) and insulin sensitivity improved (P <0.05) compared to controls. These data indicate that sub-chronic activation of the GLP-1 receptor by daily treatment with (Val(8))GLP-1 counters aspects of the age-related impairment of pancreatic beta-cell function and insulin sensitivity. 2006 Elsevier Inc. All rights reserved.
Resumo:
Glucagonlike peptide-1(7 36)amide (GLP-1) is an incretin hormone with therapeutic potential for type 2 diabetes. Rapid removal of the Nterminal dipeptide, His7-Ala8, by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) curtails the biological activity of GLP-1. Chemical modifications or substitutions of GLP-1 at His7 or Ala8 improve resistance to DPPIV action, but this often reduces potency. Little attention has focused on the metabolic stability and functional activity of GLP-1 analogues with amino acid substitution at Glu9, adjacent to the DPP IV cleavage site. We generated three novel Glu9-substituted GLP-1 analogues, (Pro9)GLP-1, (Phe9)GLP-1 and (Tyr9)GLP-1 and show for the first time that Glu9 of GLP-1 is important in DPP IV degradation, since replacing this amino acid, particularly with proline, substantially reduced susceptibility to degradation. All three novel GLP-1 analogues showed similar or slightly enhanced insulinotropic activity compared with native GLP-1 despite a moderate 4 10-fold reduction in receptor binding and cAMP generation. In addition, (Pro9)GLP 1 showed significant ability to moderate the plasma glucose excursion and increase circulating insulin concentrations in severely insulin resistant obese diabetic (ob/ob) mice. These observations indicate the importance of Glu9 for the biological activity of GLP-1 and susceptibility to DPP IVmediated degradation.
Resumo:
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted by the small intestine in response to nutrient ingestion. It has wide-ranging effects on glucose metabolism, including stimulation of insulin release, inhibition of glucagon secretion, reduction of gastric emptying and augmentation of satiety. Importantly, the insulinotropic actions of GLP-1 are uniquely dependent on ambient glucose concentrations, and it is this particular characteristic which has led to its recent emergence as a treatment for type 2 diabetes. Although the major physiological function of GLP-1 appears to be in relation to glycaemic control, there is growing evidence to suggest that it may also play an important role in the cardiovascular system. GLP-1 receptors (GLP-1Rs) are expressed in the heart and vasculature of both rodents and humans, and recent studies have demonstrated that GLP-1R agonists have wide-ranging cardiovascular actions, such as modulation of heart rate, blood pressure, vascular tone and myocardial contractility. Importantly, it appears that these agents may also have beneficial effects in the setting of cardiovascular disease (CVD). For example, GLP-1 has been found to exert cardioprotective actions in experimental models of dilated cardiomyopathy, hypertensive heart failure and myocardial infarction (MI). Preliminary clinical studies also indicate that GLP-1 infusion may improve cardiac contractile function in chronic heart failure patients with and without diabetes, and in MI patients after successful angioplasty. This review will discuss the current understanding of GLP-1 biology, examine its emerging cardiovascular actions in both health and disease and explore the potential use of GLP-1 as a novel treatment for CVD.
Resumo:
Glucagon-like peptide-1 (GLP-1) is an incretin hormone whose glucose-dependent insulinotropic actions have been harnessed as a novel therapy for glycaemic control in type 2 diabetes. Although it has been known for some time that the GLP-1 receptor is expressed in the cardiovascular system where it mediates important physiological actions, it is only recently that specific cardiovascular effects of GLP-1 in the setting of diabetes have been described. GLP-1 confers indirect benefits in cardiovascular disease (CVD) under both normal and hyperglycaemic conditions via reducing established risk factors, such as hypertension, dyslipidaemia and obesity, which are markedly increased in diabetes. Emerging evidence indicates that GLP-1 also exerts direct effects on specific aspects of diabetic CVD, such as endothelial dysfunction, inflammation, angiogenesis and adverse cardiac remodelling. However, the majority of studies have employed experimental models of diabetic CVD and information on the effects of GLP-1 in the clinical setting are limited although several large-scale trials are ongoing. It is clearly important to gain a detailed knowledge of the cardiovascular actions of GLP-1 in diabetes given the large number of patients currently receiving GLP-1 based therapies. This review will therefore discuss current understanding of the effects of GLP-1 on both cardiovascular risk factors in diabetes and direct actions on the heart and vasculature in this setting, and the evidence implicating specific targeting of GLP-1 as a novel therapy for CVD in diabetes.
Resumo:
Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.
Resumo:
Glucagon-like peptide-1(7-36)amide (GLP-1) possesses several unique and beneficial effects for the potential treatment of type 2 diabetes. However, the rapid inactivation of GLP-1 by dipeptidyl peptidase IV (DPP IV) results in a short half-life in vivo (less than 2 min) hindering therapeutic development. In the present study, a novel His7-modified analogue of GLP-1, N-pyroglutamyl-GLP-1 as well as N-acetyl-GLP-1 were synthesised and tested for DPP IV stability and biological activity. Incubation of GLP-1 with either DPP IV or human plasma resulted in rapid degradation of native GLP-1 to GLP-1(9-36)amide, while N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 were completely resistant to degradation. N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 bound to the GLP-1 receptor but had reduced affinities (IC50 values 32.9 and 6.7 nM, respectively) compared with native GLP-1 (IC50-37 nM). Similarly, both analogues stimulated cAMP production with EC50 values of 16.3 and 27 nM respectively compared with GLP-1 (EC50 4.7 nM). However, N-acetyl-GLP-1 and N-pyroglutamyl-GLP-1 exhibited potent insulinotropic activity in vitro at 5.6 mM glucose (P< 0.05 to P< 0.001) similar to native GLP-1. Both analogues (25 nM/kg body weight) lowered plasma glucose and increased plasma insulin levels when administered in conjunction with glucose (18 nM/kg body weight) to adult obese diabetic (ob/ob) mice. N-pyroglutamyl-GLP-1 was substantially better at lowering plasma glucose compared with the native peptide, while N-acetyl-GLP-1 was significantly more potent at stimulating insulin secretion. These studies indicate that N-terminal modification of GLP-1 results in DPP IV-resistant and biologically potent forms of GLP-1. The particularly powerful antihyperglycaemic action of N-pyroglutamyl-GLP-1 shows potential for the treatment of type 2 diabetes. © 2004 Society for Endocrinology.
Resumo:
Recombinant glucagon-like peptide-1 (7–36)amide (rGLP-1) was recently shown to cause significant weight loss in type 2 diabetics when administered for 6 weeks as a continuous subcutaneous infusion. The mechanisms responsible for the weight loss are not clarified. In the present study, rGLP-1 was given for 5d by prandial subcutaneous injections (PSI) (76nmol 30min before meals, four times daily; a total of 302·4nmol/24h) or by continuous subcutaneous infusion (CSI) (12·7nmol/h; a total of 304·8nmol/24h). This was performed in nineteen healthy obese subjects (mean age 44·2 (sem 2·5) years; BMI 39·0 (sem 1·2)kg/m2) in a prospective randomised, double-blind, placebo-controlled, cross-over study. Compared with the placebo, rGLP-1 administered as PSI and by CSI generated a 15% reduction in mean food intake per meal (P=0·02) after 5d treatment. A weight loss of 0·55 (sem 0·2) kg (P<0·05) was registered after 5d with PSI of rGLP-1. Gastric emptying rate was reduced during both PSI (P<0·001) and CSI (P<0·05) treatment, but more rapidly and to a greater extent with PSI of rGLP-1. To conclude, a 5d treatment of rGLP-1 at high doses by PSI, but not CSI, promptly slowed gastric emptying as a probable mechanism of action of increased satiety, decreased hunger and, hence, reduced food intake with an ensuing weight loss.