980 resultados para Global temperature changes
Resumo:
A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with near-complete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.
Resumo:
During the 20th century, solar activity increased in magnitude to a so-called grand maximum. It is probable that this high level of solar activity is at or near its end. It is of great interest whether any future reduction in solar activity could have a significant impact on climate that could partially offset the projected anthropogenic warming. Observations and reconstructions of solar activity over the last 9000 years are used as a constraint on possible future variations to produce probability distributions of total solar irradiance over the next 100 years. Using this information, with a simple climate model, we present results of the potential implications for future projections of climate on decadal to multidecadal timescales. Using one of the most recent reconstructions of historic total solar irradiance, the likely reduction in the warming by 2100 is found to be between 0.06 and 0.1 K, a very small fraction of the projected anthropogenic warming. However, if past total solar irradiance variations are larger and climate models substantially underestimate the response to solar variations, then there is a potential for a reduction in solar activity to mitigate a small proportion of the future warming, a scenario we cannot totally rule out. While the Sun is not expected to provide substantial delays in the time to reach critical temperature thresholds, any small delays it might provide are likely to be greater for lower anthropogenic emissions scenarios than for higher-emissions scenarios.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
Radiative forcing is a useful tool for predicting equilibrium global temperature change. However, it is not so useful for predicting global precipitation changes, as changes in precipitation strongly depend on the climate change mechanism and how it perturbs the atmospheric and surface energy budgets. Here a suite of climate model experiments and radiative transfer calculations are used to quantify and assess this dependency across a range of climate change mechanisms. It is shown that the precipitation response can be split into two parts: a fast atmospheric response that strongly correlates with the atmospheric component of radiative forcing, and a slower response to global surface temperature change that is independent of the climate change mechanism, ∼2-3% per unit of global surface temperature change. We highlight the precipitation response to black carbon aerosol forcing as falling within this range despite having an equilibrium response that is of opposite sign to the radiative forcing and global temperature change.
Resumo:
The vertical profile of global-mean stratospheric temperature changes has traditionally represented an important diagnostic for the attribution of the cooling effects of stratospheric ozone depletion and CO2 increases. However, CO2-induced cooling alters ozone abundance by perturbing ozone chemistry, thereby coupling the stratospheric ozone and temperature responses to changes in CO2 and ozone-depleting substances (ODSs). Here we untangle the ozone-temperature coupling and show that the attribution of global-mean stratospheric temperature changes to CO2 and ODS changes (which are the true anthropogenic forcing agents) can be quite different from the traditional attribution to CO2 and ozone changes. The significance of these effects is quantified empirically using simulations from a three-dimensional chemistry-climate model. The results confirm the essential validity of the traditional approach in attributing changes during the past period of rapid ODS increases, although we find that about 10% of the upper stratospheric ozone decrease from ODS increases over the period 1975–1995 was offset by the increase in CO2, and the CO2-induced cooling in the upper stratosphere has been somewhat overestimated. When considering ozone recovery, however, the ozone-temperature coupling is a first-order effect; fully 2/5 of the upper stratospheric ozone increase projected to occur from 2010–2040 is attributable to CO2 increases. Thus, it has now become necessary to base attribution of global-mean stratospheric temperature changes on CO2 and ODS changes rather than on CO2 and ozone changes.
Resumo:
It has been suggested that the Sun may evolve into a period of lower activity over the 21st century. This study examines the potential climate impacts of the onset of an extreme ‘Maunder Minimum like’ grand solar minimum using a comprehensive global climate model. Over the second half of the 21st century, the scenario assumes a decrease in total solar irradiance of 0.12% compared to a reference RCP8.5 experiment. The decrease in solar irradiance cools the stratopause (~1 hPa) in the annual and global mean by 1.4 K. The impact on global mean near-surface temperature is small (~−0.1 K), but larger changes in regional climate occur during the stratospheric dynamically active seasons. In Northern hemisphere (NH) winter-time, there is a weakening of the stratospheric westerly jet by up to ~3-4 m s1, with the largest changes occurring in January-February. This is accompanied by a deepening of the Aleutian low at the surface and an increase in blocking over northern Europe and the north Pacific. There is also an equatorward shift in the Southern hemisphere (SH) midlatitude eddy-driven jet in austral spring. The occurrence of an amplified regional response during winter and spring suggests a contribution from a top-down pathway for solar-climate coupling; this is tested using an experiment in which ultraviolet (200–320 nm) radiation is decreased in isolation of other changes. The results show that a large decline in solar activity over the 21st century could have important impacts on the stratosphere and regional surface climate.
Resumo:
Recent advances in understanding have made it possible to relate global precipitation changes directly to emissions of particular gases and aerosols that influence climate. Using these advances, new indices are developed here called the Global Precipitation-change Potential for pulse (GPP_P) and sustained (GPP_S) emissions, which measure the precipitation change per unit mass of emissions. The GPP can be used as a metric to compare the effects of different emissions. This is akin to the global warming potential (GWP) and the global temperature-change potential (GTP) which are used to place emissions on a common scale. Hence the GPP provides an additional perspective of the relative or absolute effects of emissions. It is however recognised that precipitation changes are predicted to be highly variable in size and sign between different regions and this limits the usefulness of a purely global metric. The GPP_P and GPP_S formulation consists of two terms, one dependent on the surface temperature change and the other dependent on the atmospheric component of the radiative forcing. For some forcing agents, and notably for CO2, these two terms oppose each other – as the forcing and temperature perturbations have different timescales, even the sign of the absolute GPP_P and GPP_S varies with time, and the opposing terms can make values sensitive to uncertainties in input parameters. This makes the choice of CO2 as a reference gas problematic, especially for the GPP_S at time horizons less than about 60 years. In addition, few studies have presented results for the surface/atmosphere partitioning of different forcings, leading to more uncertainty in quantifying the GPP than the GWP or GTP. Values of the GPP_P and GPP_S for five long- and short-lived forcing agents (CO2, CH4, N2O, sulphate and black carbon – BC) are presented, using illustrative values of required parameters. The resulting precipitation changes are given as the change at a specific time horizon (and hence they are end-point metrics) but it is noted that the GPPS can also be interpreted as the time-integrated effect of a pulse emission. Using CO2 as a references gas, the GPP_P and GPP_S for the non-CO2 species are larger than the corresponding GTP values. For BC emissions, the atmospheric forcing is sufficiently strong that the GPP_S is opposite in sign to the GTP_S. The sensitivity of these values to a number of input parameters is explored. The GPP can also be used to evaluate the contribution of different emissions to precipitation change during or after a period of emissions. As an illustration, the precipitation changes resulting from emissions in 2008 (using the GPP_P) and emissions sustained at 2008 levels (using the GPP_S) are presented. These indicate that for periods of 20 years (after the 2008 emissions) and 50 years (for sustained emissions at 2008 levels) methane is the dominant driver of positive precipitation changes due to those emissions. For sustained emissions, the sum of the effect of the five species included here does not become positive until after 50 years, by which time the global surface temperature increase exceeds 1 K.
Resumo:
Current state-of-the-art global climate models produce different values for Earth’s mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. For example, observed global temperatures over the past decade are towards the lower end of the range of CMIP5 simulations irrespective of what reference period is used, but exactly where they lie in the model distribution varies with the choice of reference period. Additionally, we demonstrate that projections of when particular temperature levels are reached, for example 2K above ‘pre-industrial’, change by up to a decade depending on the choice of reference period. In this article we discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections. We highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.
Resumo:
During the Middle Miocene climate transition about 14 million years ago, the Antarctic ice sheet expanded to near-modern volume. Surprisingly, this ice sheet growth was accompanied by a warming in the surface waters of the Southern Ocean, whereas a slight deep-water temperature increase was delayed by more than 200 thousand years. Here we use a coupled atmosphere-ocean model to assess the relative effects of changes in atmospheric CO2 concentration and ice sheet growth on regional and global temperatures. In the simulations, changes in the wind field associated with the growth of the ice sheet induce changes in ocean circulation, deep-water formation and sea-ice cover that result in sea surface warming and deep-water cooling in large swaths of the Atlantic and Indian ocean sectors of the Southern Ocean. We interpret these changes as the dominant ocean surface response to a 100-thousand-year phase of massive ice growth in Antarctica. A rise in global annual mean temperatures is also seen in response to increased Antarctic ice surface elevation. In contrast, the longer-term surface and deep-water temperature trends are dominated by changes in atmospheric CO2 concentration. We therefore conclude that the climatic and oceanographic impacts of the Miocene expansion of the Antarctic ice sheet are governed by a complex interplay between wind field, ocean circulation and the sea-ice system.
Resumo:
During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.
Resumo:
An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer.
Resumo:
OBJECTIVE: To show how a mathematical model can be used to describe and to understand the malaria transmission. METHODS: The effects on malaria transmission due to the impact of the global temperature changes and prevailing social and economic conditions in a community were assessed based on a previously presented compartmental model, which describes the overall transmission of malaria. RESULTS/CONCLUSIONS: The assessments were made from the scenarios produced by the model both in steady state and dynamic analyses. Depending on the risk level of malaria, the effects on malaria transmission can be predicted by the temperature ambient or local social and-economic conditions.
Resumo:
Different climate models, modeling methods and carbon emission scenarios were used in this paper to evaluate the effects of future climate changes on geographical distribution of species of economic and cultural importance across the Cerrado biome. As the results of several studies have shown, there are still many uncertainties associated with these projections, although bioclimatic models are still widely used and effective method to evaluate the consequences for biodiversity of these climate changes. In this article, it was found that 90% of these uncertainties are related to methods of modeling, although, regardless of the uncertainties, the results revealed that the studied species will reduce about 78% of their geographic distribution in Cerrado. For an effective work on the conservation of these species, many studies still need to be carried out, although it is already possible to observe that climate change will have a strong influence on the pattern of distribution of these species.
Resumo:
Global temperature variations between 1861 and 1984 are forecast usingsregularization networks, multilayer perceptrons and linearsautoregression. The regularization network, optimized by stochasticsgradient descent associated with colored noise, gives the bestsforecasts. For all the models, prediction errors noticeably increasesafter 1965. These results are consistent with the hypothesis that thesclimate dynamics is characterized by low-dimensional chaos and thatsthe it may have changed at some point after 1965, which is alsosconsistent with the recent idea of climate change.s