957 resultados para Global localization problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arsenic is a carcinogen to both humans and animals. Arsenicals have been associated with cancers of the skin, lung, and bladder. Clinical manifestations of chronic arsenic poisoning include non-cancer end point of hyper- and hypo-pigmentation, keratosis, hypertension, cardiovascular diseases and diabetes. Epidemiological evidence indicates that arsenic concentration exceeding 50 mug l(-1) in the drinking water is not public health protective. The current WHO recommended guideline value for arsenic in drinking water is 10 mug l(-1), whereas many developing countries are still having a value of 50 mug 1(-1). It has been estimated that tens of millions of people are. at risk exposing to excessive levels of arsenic from both contaminated water and arsenic-bearing coal from natural sources. The global health implication and possible intervention strategies were also discussed in this review article. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a novel coarse-to-fine visual localization approach: contextual visual localization. This approach relies on three elements: (i) a minimal-complexity classifier for performing fast coarse localization (submap classification); (ii) an optimized saliency detector which exploits the visual statistics of the submap; and (iii) a fast view-matching algorithm which filters initial matchings with a structural criterion. The latter algorithm yields fine localization. Our experiments show that these elements have been successfully integrated for solving the global localization problem. Context, that is, the awareness of being in a particular submap, is defined by a supervised classifier tuned for a minimal set of features. Visual context is exploited both for tuning (optimizing) the saliency detection process, and to select potential matching views in the visual database, close enough to the query view.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Localization, which is the ability of a mobile robot to estimate its position within its environment, is a key capability for autonomous operation of any mobile robot. This thesis presents a system for indoor coarse and global localization of a mobile robot based on visual information. The system is based on image matching and uses SIFT features as natural landmarks. Features extracted from training images arestored in a database for use in localization later. During localization an image of the scene is captured using the on-board camera of the robot, features are extracted from the image and the best match is searched from the database. Feature matching is done using the k-d tree algorithm. Experimental results showed that localization accuracy increases with the number of training features used in the training database, while, on the other hand, increasing number of features tended to have a negative impact on the computational time. For some parts of the environment the error rate was relatively high due to a strong correlation of features taken from those places across the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The semantic localization problem in robotics consists in determining the place where a robot is located by means of semantic categories. The problem is usually addressed as a supervised classification process, where input data correspond to robot perceptions while classes to semantic categories, like kitchen or corridor. In this paper we propose a framework, implemented in the PCL library, which provides a set of valuable tools to easily develop and evaluate semantic localization systems. The implementation includes the generation of 3D global descriptors following a Bag-of-Words approach. This allows the generation of fixed-dimensionality descriptors from any type of keypoint detector and feature extractor combinations. The framework has been designed, structured and implemented to be easily extended with different keypoint detectors, feature extractors as well as classification models. The proposed framework has also been used to evaluate the performance of a set of already implemented descriptors, when used as input for a specific semantic localization system. The obtained results are discussed paying special attention to the internal parameters of the BoW descriptor generation process. Moreover, we also review the combination of some keypoint detectors with different 3D descriptor generation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the localization problem in large-scale Underwater Wireless Sensor Networks (UWSNs). Unlike in the terrestrial positioning, the global positioning system (GPS) can not work efficiently underwater. The limited bandwidth, the severely impaired channel and the cost of underwater equipment all makes the localization problem very challenging. Most current localization schemes are not well suitable for deep underwater environment. We propose a hierarchical localization scheme to address the challenging problems. The new scheme mainly consists of four types of nodes, which are surface buoys, Detachable Elevator Transceivers (DETs), anchor nodes and ordinary nodes. Surface buoy is assumed to be equipped with GPS on the water surface. A DET is attached to a surface buoy and can rise and down to broadcast its position. The anchor nodes can compute their positions based on the position information from the DETs and the measurements of distance to the DETs. The hierarchical localization scheme is scalable, and can be used to make balances on the cost and localization accuracy. Initial simulation results show the advantages of our proposed scheme. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main focus of this thesis is to address the relative localization problem of a heterogenous team which comprises of both ground and micro aerial vehicle robots. This team configuration allows to combine the advantages of increased accessibility and better perspective provided by aerial robots with the higher computational and sensory resources provided by the ground agents, to realize a cooperative multi robotic system suitable for hostile autonomous missions. However, in such a scenario, the strict constraints in flight time, sensor pay load, and computational capability of micro aerial vehicles limits the practical applicability of popular map-based localization schemes for GPS denied navigation. Therefore, the resource limited aerial platforms of this team demand simpler localization means for autonomous navigation. Relative localization is the process of estimating the formation of a robot team using the acquired inter-robot relative measurements. This allows the team members to know their relative formation even without a global localization reference, such as GPS or a map. Thus a typical robot team would benefit from a relative localization service since it would allow the team to implement formation control, collision avoidance, and supervisory control tasks, independent of a global localization service. More importantly, a heterogenous team such as ground robots and computationally constrained aerial vehicles would benefit from a relative localization service since it provides the crucial localization information required for autonomous operation of the weaker agents. This enables less capable robots to assume supportive roles and contribute to the more powerful robots executing the mission. Hence this study proposes a relative localization-based approach for ground and micro aerial vehicle cooperation, and develops inter-robot measurement, filtering, and distributed computing modules, necessary to realize the system. The research study results in three significant contributions. First, the work designs and validates a novel inter-robot relative measurement hardware solution which has accuracy, range, and scalability characteristics, necessary for relative localization. Second, the research work performs an analysis and design of a novel nonlinear filtering method, which allows the implementation of relative localization modules and attitude reference filters on low cost devices with optimal tuning parameters. Third, this work designs and validates a novel distributed relative localization approach, which harnesses the distributed computing capability of the team to minimize communication requirements, achieve consistent estimation, and enable efficient data correspondence within the network. The work validates the complete relative localization-based system through multiple indoor experiments and numerical simulations. The relative localization based navigation concept with its sensing, filtering, and distributed computing methods introduced in this thesis complements system limitations of a ground and micro aerial vehicle team, and also targets hostile environmental conditions. Thus the work constitutes an essential step towards realizing autonomous navigation of heterogenous teams in real world applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave functions remain exponentially localized even in the presence of moderate to strong repulsive interactions, we show that interactions produce a strong decrease of the characteristic conductance scale g^{*} signaling the crossover to strong localization. This effect, which cannot be captured by a simple renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically reduce the impact of Anderson localization (interference) effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Feature selection is one of important and frequently used techniques in data preprocessing. It can improve the efficiency and the effectiveness of data mining by reducing the dimensions of feature space and removing the irrelevant and redundant information. Feature selection can be viewed as a global optimization problem of finding a minimum set of M relevant features that describes the dataset as well as the original N attributes. In this paper, we apply the adaptive partitioned random search strategy into our feature selection algorithm. Under this search strategy, the partition structure and evaluation function is proposed for feature selection problem. This algorithm ensures the global optimal solution in theory and avoids complete randomness in search direction. The good property of our algorithm is shown through the theoretical analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the global scheduling problem of multimode real-time systems upon identical multiprocessor platforms. During the execution of a multimode system, the system can change from one mode to another such that the current task set is replaced with a new task set. Thereby, ensuring that deadlines are met requires not only that a schedulability test is performed on tasks in each mode but also that (i) a protocol for transitioning from one mode to another is specified and (ii) a schedulability test for each transition is performed. In this paper, we extend the synchronous transition protocol SM-MSO in order to take into account mode-independent tasks [1], i.e., tasks of which the execution pattern must not be jeopardized by the mode changes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 Main goal of this thesis was to implement a localization system which uses sonars and WLAN intensity maps to localize an indoor mobile robot. A probabilistic localization method, Monte Carlo Localization is used in localization. Also the theory behind probabilistic localization is explained. Two main problems in mobile robotics, path tracking and global localization, are solved in this thesis. Implemented system can achieve acceptable performance in path tracking. Global localization using WLAN received signal strength information is shown to provide good results, which can be used to localize the robot accurately, but also some bad results, which are no use when trying to localize the robot to the correct place. Main goal of solving ambiguity in office like environment is achieved in many test cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We introduce and describe the Multiple Gravity Assist problem, a global optimisation problem that is of great interest in the design of spacecraft and their trajectories. We discuss its formalization and we show, in one particular problem instance, the performance of selected state of the art heuristic global optimisation algorithms. A deterministic search space pruning algorithm is then developed and its polynomial time and space complexity derived. The algorithm is shown to achieve search space reductions of greater than six orders of magnitude, thus reducing significantly the complexity of the subsequent optimisation.