936 resultados para Glass roof
Resumo:
Evolución de la desigualdad por género del empleo turístico en España. Si bien la inversión en capital laboral femenino en la industria turística ha aumentado en los últimos años y parece que la discriminación en el acceso a puestos directivos ha descendido, se siguen produciendo diferentes situaciones de desigualdad. La mujer mantiene un salario por debajo del hombre y han aparecido nuevas formas de segregación ocupacional entre hombres y mujeres e incluso entre las propias mujeres: la división entre trabajo a tiempo parcial y completo es un buen ejemplo de este proceso. La hipótesis que se plantea este trabajo es que esa combinación entre tiempo de trabajo remunerado (ámbito público) y no remunerado (ámbito privado, doméstico) es un obstáculo que provoca el acceso de los varones a empleos hasta ahora "femeninos"; así mismo, se observará la calidad del empleo turístico desde la perspectiva de género.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In May 2013, the European Commission received a mandate from the European Council to “to present an analysis of the composition and drivers of energy prices and costs in Member States, with a particular focus on the impact on households, SMEs and energy intensive industries, and looking more widely at the EU's competitiveness vis-à-vis its global economic counterparts”. Following such mandate and in view of the preparation by the Commission of a Communication and a Staff Working Document, DG Enterprise and Industry commissioned CEPS to carry out a set of studies aimed at providing well-grounded evidence about the evolution and composition of energy prices and costs at plant level within individual industry sectors. A team of CEPS researchers conducted the research, led by Christian Egenhofer and Lorna Schrefler. Vasileios Rizos served as Project Coordinator. Other CEPS researchers contributing to the project included: Fabio Genoese, Andrea Renda, Andrei Marcu, Julian Wieczorkiewicz, Susanna Roth, Federico Infelise, Giacomo Luchetta, Lorenzo Colantoni, Wijnand Stoefs, Jacopo Timini and Felice Simonelli. In addition to an introductory report entitled “About the Study and Cross-Sectoral Analysis”, CEPS prepared five sectoral case studies: two on ceramics (wall and floor tiles and bricks and roof tiles), two on chemicals (ammonia and chlorine) and one on flat glass. Each of these six studies has been consolidated in this single volume for free downloading on the CEPS website. The specific objective was to complement information already available at macro level with a bottom-up perspective on the operating conditions that industry stakeholders need to deal with, in terms of energy prices and costs. The approach chosen was based on case studies for a selected set (sub-)sectors amongst energy-intensive industries. A standard questionnaire was circulated and respondents were sampled according to specified criteria. Data and information collected were finally presented in a structured format in order to guarantee comparability of results between the different (sub-)sectors analysed. The complete set of files can also be downloaded from the European Commission’s website: http://ec.europa.eu/enterprise/newsroom/cf/itemdetail.cfm?item_id=7238&lang=en&title=Study-on-composition-and-drivers-of-energy-prices-and-costs-in-energy-intnsive-industries The results of the studies were presented at a CEPS Conference held on February 26th along with additional evidence from other similar studies. The presentations can be downloaded at: http://www.ceps.eu/event/level-and-drivers-eu-energy-prices-energy-inten...
Resumo:
Spaces without northerly orientations have an impact on the ‘energy behaviour’ of a building. This paper outlines possible energy savings and better performance achieved by different zenithal solar passive strategies (skylights, roof monitors and clerestory roof windows) and element arrangements across the roof in zones of cold to temperate climates typical of the central and central-southern Argentina. Analyses were undertaken considering daylighting, thermal and ventilation performances of the different strategies. The results indicate that heating,ventilation and lighting loads in spaces without an equator-facing facade can be significantly reduced by implementing solar passive strategies. In the thermal aspect, the solar saving fraction reached for the different strategies were averaged 43.16% for clerestories, 41.4% for roof monitors and 38.86% for skylights for a glass area of 9% to the floor area. The results also indicate average illuminance levels above 500 lux for the different clerestory and monitor arrangements, uniformity ratios of 0.66–0.82 for the most distributed arrangements and day-lighting factors between 11.78 and 20.30% for clear sky conditions, depending on the strategy. In addition, minimum air changes rates of 4 were reached for the most extreme conditions.
Resumo:
Pollutants originating with roof runoff can have a significant impact to urban stormwater quality. This signifies the importance of understanding pollutant processes on roof surfaces. Additionally, knowledge of pollutant processes on roof surfaces is important as roofs are used as the primary catchment surface for domestic rainwater harvesting. In recent years, rainwater harvesting has become one of the primary sustainable water management techniques to counteract the growing demand for potable water. Similar to all impervious services, pollutants associated with roof runoff undergo two primary processes: build-up and wash-off. The knowledge relating to these processes is limited. This paper presents outcomes of an in-depth research study into pollutant build-up and wash-off for roof surfaces. The knowledge will be important in order to develop appropriate strategies to safeguard rainwater users from possible health risks.
Resumo:
Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca2+ ions. The cellular bioactivity of MBG microspheres was evaluated by investigating the proliferation and attachment of bone marrow stromal cell (BMSC). The loading efficiency and release kinetics of bovine serum albumin (BSA) on MBG microspheres were investigated after coprecipitating with biomimetic apatite in simulated body fluids (SBF). The results showed that MBG microspheres supported BMSC attachment and the Si containing ionic products from MBG microspheres stimulated BMSCs proliferation. The density of apatite on MBG microspheres increased with the length of soaking time in SBF. BSA-loading efficiency of MBG was significantly enhanced by co-precipitating with apatite. Furthermore, the loading efficiency and release kinetics of BSA could be controlled by controlling the density of apatite formed on MBG microspheres. Our results suggest that MBG microspheres are a promising protein-delivery system as a filling material for bone defect healing and regeneration.
Resumo:
Several specimens of Libyan Desert Glass (LDG), an enigmatic natural glass from Egypt, were subjected to investigation by micro-Raman spectroscopy. The spectra of inclusions inside the LDG samples were successfully measured through the layers of glass and the mineral species were identified on this basis. The presence of cristobalite as typical for high-temperature melt products was confirmed, together with co-existing quartz. TiO2 was determined in two polymorphic species, rutile and anatase. Micro-Raman spectroscopy proved also the presence of minerals unusual for high-temperature glasses such as anhydrite and aragonite.
Resumo:
The study aimed to evaluate the suitability of Escherichia coli, enterococci and C. perfringens to assess the microbiological quality of roof harvested rainwater, and to assess whether the concentrations of these faecal indicators can be used to predict the presence or absence of specific zoonotic bacterial or protozoan pathogens. From a total of 100 samples tested, respectively 58%, 83% and 46% of samples were found to be positive for E. coli, enterococci and C. perfringens spores, as determined by traditional culture based methods. Additionally, in the samples tested, 7%, 19%, 1%, 8%, 17%, and 15% were PCR positive for A. hydrophila lip, C. coli ceuE, C. jejuni mapA, L. pneumophila mip, Salmonella invA, and G. lamblia β-giardin genes. However, none of the samples was positive for E. coli O157 LPS, VT1, VT2 and C. parvum COWP genes. The presence or absence of these potential pathogens did not correlate with any of the faecal indicator bacterial concentrations as determined by a binary logistic regression model. The roof-harvested rainwater samples tested in this study appear to be of poor microbiological quality and no significant correlation was found between the concentration of faecal indicators and pathogenic microorganisms. The use of faecal indicator bacteria raises questions regarding their reliability in assessing the microbiological quality of water and particularly their poor correlation with pathogenic microorganisms. The presence of one or more zoonotic pathogens suggests that the microbiological analysis of water should be performed, and appropriate treatment measures should be undertaken especially in tanks where the water is used for drinking.
Resumo:
This paper presents the outcomes of a study which focused on evaluating roof surfaces as stormwater harvesting catchments. Build-up and wash-off samples were collected from model roof surfaces. The collected build-up samples were separated into five different particle size ranges prior to the analysis of physico-chemical parameters. Study outcomes showed that roof surfaces are efficient catchment surfaces for the deposition of fine particles which travel over long distances. Roof surfaces contribute relatively high pollutant loads to the runoff and hence significantly influence the quality of the harvested rainwater. Pollutants associated with solids build-up on roof surfaces can vary with time, even with minimal changes to total solids load and particle size distribution. It is postulated that this variability is due to changes in distant atmospheric pollutant sources and wind patterns. The study highlighted the requirement for first flush devices to divert the highly polluted initial portion of roof runoff. Furthermore, it is highly recommended to not to harvest runoff from small intensity rainfall events since there is a high possibility that the runoff would contain a significant amount of pollutants even after the initial runoff fraction.