897 resultados para Glass Powder


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An upconversion random laser (RL) operating in the ultraviolet is reported for Nd 3+ doped fluoroindate glass powder pumped at 575 nm. The RL is obtained by the resonant excitation of the Nd 3+ state 2G 7/2 followed by energy transfer among two excited ions such that one ion in the pair decays to a lower energy state and the other is promoted to state 4D 7/2 from where it decays emitting light at 381 nm. The RL threshold of 30 kW/cm 2 was determined by monitoring the photoluminescence intensity as a function of the pump laser intensity. The RL pulses have time duration of 29 ns that is 50 times smaller than the decay time of the upconversion signal when the sample is pumped with intensities below the RL laser threshold. © 2011 Optical Society of America.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Green tapes of Li(2)O-ZrO(2)-SiO(2)-Al(2)O(3) (LZSA) parent glass were produced by aqueous tape casting as the starting material for the laminated object manufacturing (LOM) process. The rheological behavior of the powder suspensions in aqueous media, as well as the mechanical properties of the cast tapes, was evaluated. According to xi potential measurements, the LZSA glass powder particles showed acid surface characteristics and an IEP of around 4 when in aqueous media. The critical volume fraction of solids was about 72 wt% (27 vol%), which hindered the processability of more concentrated slurries. The glass particles also showed an anisometric profile, which contributed to an increase in the interactions between particles during flow. Therefore, the suspensions could not be processed at high solids loadings. Aqueous-based glass suspensions were also characterized by shear thickening after the addition of dispersants. Three slurry compositions were formulated, suitable green tapes were cast, and tapes were successfully laminated by LOM to a gear wheel geometry. A higher tensile strength of the green tapes corresponded to a higher tensile strength of the laminates. Thermal treatment was then applied to the laminates: pyrolysis at 525 degrees C, sintering at 700 degrees C for 1 h, and crystallization at 850 degrees C for 30 min. A 20% volumetric shrinkage was observed, but no surface flaws or inhomogeneous areas were detected. The sintered part maintained the curved edges and internal profile after heat treatment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

intense photoluminescence in the visible region was observed at room temperature in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The emission band maximum shows an interesting dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. These findings indicate that the photoluminescence may be directly related to unsatisfied chemical bonds correlated with the high surface area. The Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that samples milled more than 10 h present the formation of nanocrystallites with about 10-20 nm. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, we propose two new models to describe the crystallisation kinetics of glass particles and use them to determine the density of nucleation sites, N(s), on glass powders. We tested these models with sintered compacts of diopside glass particles using sinter-crystallisation treatments at 825 degrees C (T(g)similar to 727 degrees C), that covered from null to almost 100% crystallised volume time fraction. We measured and compared the evolution of the crystallised volume fractions by optical microscopy and x-ray diffraction. Then we fit our expressions to experimental data using Ns and R (the average particle radius) as adjustable parameters. For comparison, we also fit to our data existing expressions that describe the crystallised volume fraction in glass powders. We demonstrate that all the methods allow one to estimate N(s) with reasonable accuracy. For our ground and water washed diopside glass powder, N(s) is between 10(10)-10(11) sites.m(-2). The reasonable agreement between experimental and adjusted R confirms the consistency of all five models tested. However, one of our equations does not require taking into account the change of crystallisation mode from 3-dimensional to 1-dimensional, and this is advantageous.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visible photoluminescence was generated in standard soda-lime-silica glass powder, mechanically milled in a high-energy attrition mill. The broad emission band maximum shows a linear dependence on the exciting wavelength, suggesting the possibility to tune the PL emission. The photoluminescence was attributed to defect generation related to unsatisfied chemical bonds due to the high surface area. Raman scattering and ultraviolet-visible optical reflectance measurements corroborate this assertion. Transmission electron microscopy measurements indicate that the powder is composed by nanocrystallites with about 10-20 nanometers immersed in an amorphous media.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An analytical model developed to describe the crystallization kinetics of spherical glass particles has been derived in this work. A continuous phase transition from three-dimensional (3D)-like to 1D-like crystal growth has been considered and a procedure for the quantitative evaluation of the critical time for this 3D-1D transition is proposed. This model also allows straightforward determination of the density of surface nucleation sites on glass powders using differential scanning calorimetry data obtained under different thermal conditions. © 2009 The American Ceramic Society.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le béton conventionnel (BC) a de nombreux problèmes tels que la corrosion de l’acier d'armature et les faibles résistances des constructions en béton. Par conséquent, la plupart des structures fabriquées avec du BC exigent une maintenance fréquent. Le béton fibré à ultra-hautes performances (BFUP) peut être conçu pour éliminer certaines des faiblesses caractéristiques du BC. Le BFUP est défini à travers le monde comme un béton ayant des propriétés mécaniques, de ductilité et de durabilité supérieures. Le BFUP classique comprend entre 800 kg/m³ et 1000 kg/m³ de ciment, de 25 à 35% massique (%m) de fumée de silice (FS), de 0 à 40%m de poudre de quartz (PQ) et 110-140%m de sable de quartz (SQ) (les pourcentages massiques sont basés sur la masse totale en ciment des mélanges). Le BFUP contient des fibres d'acier pour améliorer sa ductilité et sa résistance aux efforts de traction. Les quantités importantes de ciment utilisées pour produire un BFUP affectent non seulement les coûts de production et la consommation de ressources naturelles comme le calcaire, l'argile, le charbon et l'énergie électrique, mais affectent également négativement les dommages sur l'environnement en raison de la production substantielle de gaz à effet de serre dont le gas carbonique (CO[indice inférieur 2]). Par ailleurs, la distribution granulométrique du ciment présente des vides microscopiques qui peuvent être remplis avec des matières plus fines telles que la FS. Par contre, une grande quantité de FS est nécessaire pour combler ces vides uniquement avec de la FS (25 à 30%m du ciment) ce qui engendre des coûts élevés puisqu’il s’agit d’une ressource limitée. Aussi, la FS diminue de manière significative l’ouvrabilité des BFUP en raison de sa surface spécifique Blaine élevée. L’utilisation du PQ et du SQ est également coûteuse et consomme des ressources naturelles importantes. D’ailleurs, les PQ et SQ sont considérés comme des obstacles pour l’utilisation des BFUP à grande échelle dans le marché du béton, car ils ne parviennent pas à satisfaire les exigences environnementales. D’ailleurs, un rapport d'Environnement Canada stipule que le quartz provoque des dommages environnementaux immédiats et à long terme en raison de son effet biologique. Le BFUP est généralement vendu sur le marché comme un produit préemballé, ce qui limite les modifications de conception par l'utilisateur. Il est normalement transporté sur de longues distances, contrairement aux composantes des BC. Ceci contribue également à la génération de gaz à effet de serre et conduit à un coût plus élevé du produit final. Par conséquent, il existe le besoin de développer d’autres matériaux disponibles localement ayant des fonctions similaires pour remplacer partiellement ou totalement la fumée de silice, le sable de quartz ou la poudre de quartz, et donc de réduire la teneur en ciment dans BFUP, tout en ayant des propriétés comparables ou meilleures. De grandes quantités de déchets verre ne peuvent pas être recyclées en raison de leur fragilité, de leur couleur, ou des coûts élevés de recyclage. La plupart des déchets de verre vont dans les sites d'enfouissement, ce qui est indésirable puisqu’il s’agit d’un matériau non biodégradable et donc moins respectueux de l'environnement. Au cours des dernières années, des études ont été réalisées afin d’utiliser des déchets de verre comme ajout cimentaire alternatif (ACA) ou comme granulats ultrafins dans le béton, en fonction de la distribution granulométrique et de la composition chimique de ceux-ci. Cette thèse présente un nouveau type de béton écologique à base de déchets de verre à ultra-hautes performances (BEVUP) développé à l'Université de Sherbrooke. Les bétons ont été conçus à l’aide de déchets verre de particules de tailles variées et de l’optimisation granulaire de la des matrices granulaires et cimentaires. Les BEVUP peuvent être conçus avec une quantité réduite de ciment (400 à 800 kg/m³), de FS (50 à 220 kg/m³), de PQ (0 à 400 kg/m³), et de SQ (0-1200 kg/m³), tout en intégrant divers produits de déchets de verre: du sable de verre (SV) (0-1200 kg/m³) ayant un diamètre moyen (d[indice inférieur 50]) de 275 µm, une grande quantité de poudre de verre (PV) (200-700 kg/m³) ayant un d50 de 11 µm, une teneur modérée de poudre de verre fine (PVF) (50-200 kg/m³) avec d[indice inférieur] 50 de 3,8 µm. Le BEVUP contient également des fibres d'acier (pour augmenter la résistance à la traction et améliorer la ductilité), du superplastifiants (10-60 kg/m³) ainsi qu’un rapport eau-liant (E/L) aussi bas que celui de BFUP. Le remplacement du ciment et des particules de FS avec des particules de verre non-absorbantes et lisse améliore la rhéologie des BEVUP. De plus, l’utilisation de la PVF en remplacement de la FS réduit la surface spécifique totale nette d’un mélange de FS et de PVF. Puisque la surface spécifique nette des particules diminue, la quantité d’eau nécessaire pour lubrifier les surfaces des particules est moindre, ce qui permet d’obtenir un affaissement supérieur pour un même E/L. Aussi, l'utilisation de déchets de verre dans le béton abaisse la chaleur cumulative d'hydratation, ce qui contribue à minimiser le retrait de fissuration potentiel. En fonction de la composition des BEVUP et de la température de cure, ce type de béton peut atteindre des résistances à la compression allant de 130 à 230 MPa, des résistances à la flexion supérieures à 20 MPa, des résistances à la traction supérieure à 10 MPa et un module d'élasticité supérieur à 40 GPa. Les performances mécaniques de BEVUP sont améliorées grâce à la réactivité du verre amorphe, à l'optimisation granulométrique et la densification des mélanges. Les produits de déchets de verre dans les BEVUP ont un comportement pouzzolanique et réagissent avec la portlandite générée par l'hydratation du ciment. Cependant, ceci n’est pas le cas avec le sable de quartz ni la poudre de quartz dans le BFUP classique, qui réagissent à la température élevée de 400 °C. L'addition des déchets de verre améliore la densification de l'interface entre les particules. Les particules de déchets de verre ont une grande rigidité, ce qui augmente le module d'élasticité du béton. Le BEVUP a également une très bonne durabilité. Sa porosité capillaire est très faible, et le matériau est extrêmement résistant à la pénétration d’ions chlorure (≈ 8 coulombs). Sa résistance à l'abrasion (indice de pertes volumiques) est inférieure à 1,3. Le BEVUP ne subit pratiquement aucune détérioration aux cycles de gel-dégel, même après 1000 cycles. Après une évaluation des BEVUP en laboratoire, une mise à l'échelle a été réalisée avec un malaxeur de béton industriel et une validation en chantier avec de la construction de deux passerelles. Les propriétés mécaniques supérieures des BEVUP a permis de concevoir les passerelles avec des sections réduites d’environ de 60% par rapport aux sections faites de BC. Le BEVUP offre plusieurs avantages économiques et environnementaux. Il réduit le coût de production et l’empreinte carbone des structures construites de béton fibré à ultra-hautes performances (BFUP) classique, en utilisant des matériaux disponibles localement. Il réduit les émissions de CO[indice inférieur 2] associées à la production de clinkers de ciment (50% de remplacement du ciment) et utilise efficacement les ressources naturelles. De plus, la production de BEVUP permet de réduire les quantités de déchets de verre stockés ou mis en décharge qui causent des problèmes environnementaux et pourrait permettre de sauver des millions de dollars qui pourraient être dépensés dans le traitement de ces déchets. Enfin, il offre une solution alternative aux entreprises de construction dans la production de BFUP à moindre coût.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes  The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal insulation is used to protect the heated or cooled surfaces by the low thermal conductivity materials. The rigid ricin polyurethane foams (PURM) are used for thermal insulation and depend on the type and concentration of blowing agent. Obtaining PURM occurs by the use of polyol, silicone, catalyst and blowing agent are pre -mixed, reacting with the isocyanate. The glass is reusable, returnable and recyclable heat insulating material, whose time of heat dissipation determines the degree of relaxation of its structure; and viscosity determines the conditions for fusion, operating temperatures, annealing, etc. The production of PURM composites with waste glass powder (PV) represents economical and renewable actions of manufacturing of thermal insulating materials. Based on these aspects, the study aimed to produce and characterize the PURM composites with PV, whose the mass percentages were 5, 10, 20, 30, 40 and 50 wt%. PURM was obtained commercially, while the PV was recycled from the tailings of the stoning process of a glassmaking; when the refining process was applied to obtain micrometer particles. The PURM + PV composites were studied taking into account the standard sample of pure PURM and the influence of the percentage of PV in this PURM matrix. The results of the chemical, physical and morphological characterization were discussed taking into account the difference in the microstructural morphology of the PURM+PV composites and the pure PURM, as well the results of the physicochemical, mechanical e thermophysical tests by values obtained of density, hardness, compressive strength, specific heat, thermal conductivity and diffusivity. In general, the structure of pure PURM showed large, elongated and regular pores, while PURM+PV composites showed irregular, small and rounded pores with shapeless cells. This may have contributed to reducing their mechanical strength, especially for PURM - PV50. The hardness and density were found to have a proportional relationship with the PV content on PURM matrix. The specific heat, thermal diffusivity and thermal conductivity showed proportional relationship to each other. So, this has been realized that the increasing the PV content on PURM matrix resulted in the rise of diffusivity and thermal conductivity and the decrease of the specific heat. However, the values obtained by the PURM composites were similar the values of pure PURM, mainly the PURM-PV5 and PURM-PV10. Therefore, these composites can be applied like thermal insulator; furthermore, their use could reduce the production costs and to preserve the environment