911 resultados para Gibbs algorithms


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Linear mixed models were developed to handle clustered data and have been a topic of increasing interest in statistics for the past 50 years. Generally. the normality (or symmetry) of the random effects is a common assumption in linear mixed models but it may, sometimes, be unrealistic, obscuring important features of among-subjects variation. In this article, we utilize skew-normal/independent distributions as a tool for robust modeling of linear mixed models under a Bayesian paradigm. The skew-normal/independent distributions is an attractive class of asymmetric heavy-tailed distributions that includes the skew-normal distribution, skew-t, skew-slash and the skew-contaminated normal distributions as special cases, providing an appealing robust alternative to the routine use of symmetric distributions in this type of models. The methods developed are illustrated using a real data set from Framingham cholesterol study. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of structured classification, where the task is to predict a label y from an input x, and y has meaningful internal structure. Our framework includes supervised training of Markov random fields and weighted context-free grammars as special cases. We describe an algorithm that solves the large-margin optimization problem defined in [12], using an exponential-family (Gibbs distribution) representation of structured objects. The algorithm is efficient—even in cases where the number of labels y is exponential in size—provided that certain expectations under Gibbs distributions can be calculated efficiently. The method for structured labels relies on a more general result, specifically the application of exponentiated gradient updates [7, 8] to quadratic programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic genomes display segmental patterns of variation in various properties, including GC content and degree of evolutionary conservation. DNA segmentation algorithms are aimed at identifying statistically significant boundaries between such segments. Such algorithms may provide a means of discovering new classes of functional elements in eukaryotic genomes. This paper presents a model and an algorithm for Bayesian DNA segmentation and considers the feasibility of using it to segment whole eukaryotic genomes. The algorithm is tested on a range of simulated and real DNA sequences, and the following conclusions are drawn. Firstly, the algorithm correctly identifies non-segmented sequence, and can thus be used to reject the null hypothesis of uniformity in the property of interest. Secondly, estimates of the number and locations of change-points produced by the algorithm are robust to variations in algorithm parameters and initial starting conditions and correspond to real features in the data. Thirdly, the algorithm is successfully used to segment human chromosome 1 according to GC content, thus demonstrating the feasibility of Bayesian segmentation of eukaryotic genomes. The software described in this paper is available from the author's website (www.uq.edu.au/similar to uqjkeith/) or upon request to the author.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

- This paper presents a validation proposal for development of diagnostic and prognostic algorithms for SF6 puffer circuit-breakers reproduced from actual site waveforms. The re-ignition/restriking rates are duplicated in given circuits and the cumulative energy dissipated in interrupters by the restriking currents. The targeted objective is to provide a simulated database for diagnosis of re-ignition/restrikes relating to the phase to earth voltage and the number of re-ignition/restrikes as well as estimating the remaining life of SF6 circuit-breakers. The model-based diagnosis of a tool will be useful in monitoring re-ignition/restrikes as well as predicting a nozzle’s lifetime. This will help ATP users with practical study cases and component data compilation for shunt reactor switching and capacitor switching. This method can be easily applied with different data for the different dielectric curves of circuit breakers and networks. This paper presents modelling details and some of the available cases, required project support, the validation proposal, the specific plan for implementation and the propsed main contributions.