18 resultados para Geotectonics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extension of overthickened continental crust is commonly characterized by an early core complex stage of extension followed by a later stage of crustal-scale rigid block faulting. These two stages are clearly recognized during the extensional destruction of the Alpine orogen in northeast Corsica, where rigid block faulting overprinting core complex formation eventually led to crustal separation and the formation of a new oceanic backarc basin (the Ligurian Sea). Here we investigate the geodynamic evolution of continental extension by using a novel, fully coupled thermomechanical numerical model of the continental crust. We consider that the dynamic evolution is governed by fault weakening, which is generated by the evolution of the natural-state variables (i.e., pressure, deviatoric stress, temperature, and strain rate) and their associated energy fluxes. Our results show the appearance of a detachment layer that controls the initial separation of the brittle crust on characteristic listric faults, and a core complex formation that is exhuming strongly deformed rocks of the detachment zone and relatively undeformed crustal cores. This process is followed by a transitional period, characterized by an apparent tectonic quiescence, in which deformation is not localized and energy stored in the upper crust is transferred downward and causes self-organized mobilization of the lower crust. Eventually, the entire crust ruptures on major crosscutting faults, shifting the tectonic regime from core complex formation to wholesale rigid block faulting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hanging wall of the Alpine Fault near Franz Josef Glacier has been exhumed during the past similar to2-3 m.y. providing a sample of the ductilely deformed middle crust of a modem obliquely convergent orogen. Presently exposed rocks of the Pacific Plate are inferred to have undergone several phases of ductile deformation as they moved westward above a mid-crustal detachment. Initially they were transpressed across the outboard part of the orogen, resulting in oblate fabrics with a down-dip stretch. Later, they encountered the Alpine Fault, experiencing an oblique-slip backshearing on vertical planes. This escalator-like deformation tilted and thinned the incoming crust onto that crustal-scale oblique ramp. This style of hanging wall deformation may affect only the most rapidly uplifting, central part of the Southern Alps because of the low flexural rigidity of the crust in that region and its displacement over a relatively sharp ramp-angle at depth. A 3D transpressive flow affected mylonites locally near the fault, but their shear direction remained parallel to plate motion, ruling out ductile 'extrusion' as an important process in this orogen. Outside the mylonite zone, late Cenozoic shortening is inferred to be modest (30-40%), as measured from deformation of younger biotite grains. Oblique collision is dominated by translation on the Alpine Fault, and rocks migrate rapidly through the deforming zone, preventing the accumulation of large finite strains. Transpression may play a minor role in oblique collision. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Devonian to Lower Carboniferous strata of the Campwyn Volcanics of east central Queensland preserve a substantial sequence of first-cycle volcaniclastic sedimentary and coeval volcanic rocks that record prolonged volcanic activity along the northern New England Fold Belt. The style and scale of volcanism varied with time, producing an Upper Devonian sequence of mafic volcano-sedimentary rocks overlain by a rhyolitic ignimbrite-dominated sequence that passes upward into a Lower Carboniferous limestone-bearing sedimentary sequence. We define two facies associations for the Campwyn Volcanics. A lower facies association is dominated by mafic volcanic-derived sedimentary breccias with subordinate primary mafic volcanic rocks comprising predominantly hyaloclastite and peperite. Sedimentary breccias record episodic and high energy, subaqueous depositional events with clastic material sourced from a mafic lava-dominated terrain. Some breccias contain a high proportion of attenuated dense, glassy mafic juvenile clasts, suggesting a syn-eruptive origin. The lower facies association coarsens upwards from a lithic sand-dominated sequence through a thick interval of pebble- to boulder-grade polymict volcaniclastic breccias, culminating in facies that demonstrate subaerial exposure. The silicic upper facies association marks a significant change in eruptive style, magma composition and the nature of eruptive sources, as well as the widespread development of subaerial depositional conditions. Crystal-rich, high-grade, low- to high-silica rhyolite ignimbrites dominate the base of this facies association. Biostratigraphic age controls indicate that the ignimbrite-bearing sequences are Famennian to lower-mid Tournaisian in age. The ignimbrites represent extra-caldera facies with individual units up to 40 m thick and mostly lacking coarse lithic breccias. Thick deposits of pyroclastic material interbedded with fine-grained siliceous sandstone and mudstone (locally radiolarian-bearing) were deposited from pyroclastic flows that crossed palaeoshorelines or represent syn-eruptive, resedimented pyroclastic material. Some block-bearing lithic-pumice-crystal breccias may also reflect more proximal subaqueous silicic explosive eruptions. Crystal-lithic sandstones interbedded with, and overlying the ignimbrites, contain abundant detrital volcanic quartz and feldspar derived from the pyroclastic deposits. Limestone is common in the upper part of the upper facies association, and several beds are oolitic (cf. Rockhampton Group of the Yarrol terrane). Overall, the upper facies association fines upward and is transgressive, recording a return to shallow-marine conditions. Palaeocurrent data from all stratigraphic levels in the Campwyn Volcanics indicate that the regional sediment-dispersal direction was to the northwest, and opposed to the generally accepted notion of easterly sediment dispersal from a volcanic arc source. The silicic upper facies association correlates in age and lithology to Early Carboniferous silicic volcanism in the Drummond (Cycle 1) and Burdekin Basins, Connors Arch, and in the Yarrol terranes of eastern Queensland. The widespread development of silicic volcanism in the Early Carboniferous indicates that silicic (rift-related) magmatism was not restricted to the Drummond Basin, but was part of a more substantial silicic igneous province.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hard‐rock watersheds commonly exhibit complex geological bedrock and morphological features. Hydromineral resources have relevant economic value for the thermal spas industry. The present study aims to develop a groundwater vulnerability approach in Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal) which has a thermal tradition that dates back to the late 19th century, and contribute to a better understanding of the hydrogeological conceptual site model. In this work different layers were overlaid, generating several thematic maps to arrive at an integrated framework of several key‐sectors in Caldas da Cavaca site. Thus, to accomplish a comprehensive analysis and conceptualization of the site, a multi‐technical approach was used, such as, field and laboratory techniques, where several data was collected, like geotectonics, hydrology and hydrogeology, hydrogeomorphology, hydrogeophysical and hydrogeomechanical zoning aiming the application of the so‐called DISCO method. All these techniques were successfully performed and a groundwater vulnerability to contamination assessment, based on GOD‐S, DRASTIC‐Fm, SINTACS, SI and DISCO indexes methodology, was delineated. Geographical Information Systems (GIS) technology was on the basis to organise and integrate the geodatabases and to produce all the thematic maps. This multi‐technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualisation, contributing to better decision‐making of water resources management and sustainability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main geotectonics models presented during the last 25 yr to explain the evolution of the Late Precambrian (Brasiliano Cycle) terranes of the NE of the State of Sao Paulo and the adjacent areas of the State of Minas Gerais, domain of the Guaxupe Massif, SE Brazil, are presented and discussed. The models can be classified in: 1) classic; 2) mainly ensialic; and 3) applications of the plate tectonic theory. -from English summary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho consiste na interpretação de informações gravimétricas e aeromagnetométricas (Projeto Geofísico Brasil-Canadá - PGBC) da região setentrional da Faixa de Dobramentos Araguaia, envolvendo uma área de aproximadamente 129.000km2, compreendida entre os meridianos 47°50’W e 50°30’W e paralelos 4°50'S e 9°00'S. Abrange porções sudeste do Estado do Pará, noroeste de Goiás e oeste do Maranhão. Os trabalhos de campo constaram de levantamentos gravimétrico e altimétrico, ao longo de rodovias que constituem a rede viária regional, e os resultados obtidos, após correções e reduções, foram então organizados de forma a constituírem um mapa de anomalias Bouguer, apresentado em escala 1:500.000. O padrão gravimétrico da faixa de dobramentos Araguaia se caracteriza por mostrar feições predominantemente longitudinais, com curvas isoanômalas de direções submeridianas, concordante com o comportamento litológico-estrutural conhecido para a área. Na porção centro-meridional desse mapa aparece uma zona de anomalia negativa, alongada e intensa (menos de -100mgal), a qual sofre duas importantes inflexões para NW, sendo uma correlacionável ao Lineamento Carajás, e a outra na altura do paralelo 5°30'S. Apresenta zonas de altos gravimétricos, notadamente na porção noroeste (domínio cratônico), relacionada à influência das metavulcânicas do Grupo Grão Pará, e na porção nordeste, devida a massas densas introduzidas na crosta. Destaca-se também o relativo alto gravimétrico acompanhando o flanco oriental do eixo de ocorrência das braquidobras, podendo ser devido a massas excedentes colocadas sob essa região, através de esforços tectônicos, produzindo elevações do nível de base da crosta e consequentemente do embasamento. De forma genérica o flanco oriental da faixa mostra um gradiente mais intenso que o ocidental, devido principalmente à configuração geométrica das estruturas nesse setor. Da mesma forma merece destaque o gradiente regional ascendente de sul para norte. A análise das cartas de intensidade magnética do PGBC fornecem condições à individualização de diversos domínios magnéticos, perfeitamente correlacionáveis litológico e estruturalmente com as unidades geotectônicas que compõem o arcabouço regional, assim como suas subunidades. A execução de modelamento simples, quer para as informações gravimétricas como magnetométricas, objetivaram fornecer subsídios semi-quantitativos à interpretação, de forma a auxiliar no estabelecimento do padrão geométrico do embasamento da faixa de dobramentos Araguaia, assim como das estruturas a ela impostas. Assim, por meio do processamento das informações gravimétricas, verificou-se um padrão geométrico na forma de fatias imbricadas, estabelecidas sobre o substrato. A grande anomalia negativa da porção centro-meridional da faixa pode estar relacionada a uma deficiência de massa profunda (depressão na base da crosta) ou ainda a uma associação entre contraste de densidade e espessamento do pacote de supracrustais, nessa porção. O baixo gravimétrico da porção sudeste da área, entre Guarai e Tupirama, é devido a uma depressão do embasamento, da mesma forma como a anomalia negativa associada ao Lineamento Carajás está relacionada a uma estrutura sinformal conhecida.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classical strength profile of continents(1,2) is derived from a quasi-static view of their rheological response to stress-one that does not consider dynamic interactions between brittle and ductile layers. Such interactions result in complexities of failure in the brittle-ductile transition and the need to couple energy to understand strain localization. Here we investigate continental deformation by solving the fully coupled energy, momentum and continuum equations. We show that this approach produces unexpected feedback processes, leading to a significantly weaker dynamic strength evolution. In our model, stress localization focused on the brittle-ductile transition leads to the spontaneous development of mid-crustal detachment faults immediately above the strongest crustal layer. We also find that an additional decoupling layer forms between the lower crust and mantle. Our results explain the development of decoupling layers that are observed to accommodate hundreds of kilometres of horizontal motions during continental deformation.