1000 resultados para Geostatistical Method
Resumo:
This study deals with investigating the groundwater quality for irrigation purpose, the vulnerability of the aquifer system to pollution and also the aquifer potential for sustainable water resources development in Kobo Valley development project. The groundwater quality is evaluated up on predicting the best possible distribution of hydrogeochemicals using geostatistical method and comparing them with the water quality guidelines given for the purpose of irrigation. The hydro geochemical parameters considered are SAR, EC, TDS, Cl-, Na+, Ca++, SO4 2- and HCO3 -. The spatial variability map reveals that these parameters falls under safe, moderate and severe or increasing problems. In order to present it clearly, the aggregated Water Quality Index (WQI) map is constructed using Weighted Arithmetic Mean method. It is found that Kobo-Gerbi sub basin is suffered from bad water quality for the irrigation purpose. Waja Golesha sub-basin has moderate and Hormat Golena is the better sub basin in terms of water quality. The groundwater vulnerability assessment of the study area is made using the GOD rating system. It is found that the whole area is experiencing moderate to high risk of vulnerability and it is a good warning for proper management of the resource. The high risks of vulnerability are noticed in Hormat Golena and Waja Golesha sub basins. The aquifer potential of the study area is obtained using weighted overlay analysis and 73.3% of the total area is a good site for future water well development. The rest 26.7% of the area is not considered as a good site for spotting groundwater wells. Most of this area fall under Kobo-Gerbi sub basin.
Resumo:
Precision agriculture based on the physical and chemical properties of soil requires dense sampling to determine the spatial variability of these properties. This dense sampling is often expensive and time-consuming. One technique used to reduce sample numbers involves defining management zones based on information collected in the field. Some researchers have demonstrated the importance of soil electrical variables in defining management zones. The objective of this study was to evaluate the relationship between the spatial variability of the apparent electrical conductivity and the soil properties in the coffee production of mountain regions. Spatial variability maps were generated using a geostatistical method. Based on the spatial variability results, a correlation analysis, using bivariate Moran's index, was done to evaluate the relationship between the apparent electrical conductivity and soil properties. The maps of potassium (K) and remaining phosphorus (P-rem) were the closest to the spatial variability pattern of the apparent electrical conductivity.
Resumo:
[1] In many practical situations where spatial rainfall estimates are needed, rainfall occurs as a spatially intermittent phenomenon. An efficient geostatistical method for rainfall estimation in the case of intermittency has previously been published and comprises the estimation of two independent components: a binary random function for modeling the intermittency and a continuous random function that models the rainfall inside the rainy areas. The final rainfall estimates are obtained as the product of the estimates of these two random functions. However the published approach does not contain a method for estimation of uncertainties. The contribution of this paper is the presentation of the indicator maximum likelihood estimator from which the local conditional distribution of the rainfall value at any location may be derived using an ensemble approach. From the conditional distribution, representations of uncertainty such as the estimation variance and confidence intervals can be obtained. An approximation to the variance can be calculated more simply by assuming rainfall intensity is independent of location within the rainy area. The methodology has been validated using simulated and real rainfall data sets. The results of these case studies show good agreement between predicted uncertainties and measured errors obtained from the validation data.
Resumo:
This paper describes a geostatistical method, known as factorial kriging analysis, which is well suited for analyzing multivariate spatial information. The method involves multivariate variogram modeling, principal component analysis, and cokriging. It uses several separate correlation structures, each corresponding to a specific spatial scale, and yields a set of regionalized factors summarizing the main features of the data for each spatial scale. This method is applied to an area of high manganese-ore mining activity in Amapa State, North Brazil. Two scales of spatial variation (0.33 and 2.0 km) are identified and interpreted. The results indicate that, for the short-range structure, manganese, arsenic, iron, and cadmium are associated with human activities due to the mining work, while for the long-range structure, the high aluminum, selenium, copper, and lead concentrations, seem to be related to the natural environment. At each scale, the correlation structure is analyzed, and regionalized factors are estimated by cokriging and then mapped.
Resumo:
This paper presents the results of electrical resistivity methods in the area delineation that was potentially contaminated by liquefaction products, which are also called putrefactive liquids in Vila Rezende municipal cemetery, Piracicaba, So Paulo, Brazil. The results indicate a depth of water table between 3.1 and 5.1 m, with two groundwater direction flows, one to the SW and another to the SE. Due to the contamination plumes, which have the same groundwater direction flow, as well the conductive anomalies observed in the geoelectric sections, the contamination suspicions in the area were confirmed. The probable plume to the SE extends beyond the limits of the cemetery. The location of the conductive anomalies and the probable contamination plumes showed that the contamination is linked with the depth of the water table and the burial time. Mapping using the geostatistical method of ordinary kriging applied to the work drew structural characteristics of the regional phenomenon and spatial behavior of the electrical resistivity data, resulting in continued surfaces. Thus, this method has proved to be an important tool for mapping contamination plumes in cemeteries.
Resumo:
160 groundwater bores in the Ribeirao Preto region were used to study the behaviour of the piezometric surface of the Botucatu Formation aquifer by geostatistical methodology. The semi-variogram showed the following results: nugget = 50 m2; sill = 450 m2 and range = 4.5 km. The piezometric surface, obtained by punctual kriging in a 100 x 100 knot grid, revealed two lowered zones: one in a southwest to north-northeastern trend, indicating the groundwater flow north toward the Rio Pardo; and the other in the central part due to the high concentration of holes in the urban region of Ribeirao Preto city. -from English summary
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents the results of electrical resistivity methods in the area delineation that was potentially contaminated by liquefaction products, which are also called putrefactive liquids in Vila Rezende municipal cemetery, Piracicaba, So Paulo, Brazil. The results indicate a depth of water table between 3.1 and 5.1 m, with two groundwater direction flows, one to the SW and another to the SE. Due to the contamination plumes, which have the same groundwater direction flow, as well the conductive anomalies observed in the geoelectric sections, the contamination suspicions in the area were confirmed. The probable plume to the SE extends beyond the limits of the cemetery. The location of the conductive anomalies and the probable contamination plumes showed that the contamination is linked with the depth of the water table and the burial time. Mapping using the geostatistical method of ordinary kriging applied to the work drew structural characteristics of the regional phenomenon and spatial behavior of the electrical resistivity data, resulting in continued surfaces. Thus, this method has proved to be an important tool for mapping contamination plumes in cemeteries.
Resumo:
A condutividade hidráulica (K) é um dos parâmetros controladores da magnitude da velocidade da água subterrânea, e consequentemente, é um dos mais importantes parâmetros que afetam o fluxo subterrâneo e o transporte de solutos, sendo de suma importância o conhecimento da distribuição de K. Esse trabalho visa estimar valores de condutividade hidráulica em duas áreas distintas, uma no Sistema Aquífero Guarani (SAG) e outra no Sistema Aquífero Bauru (SAB) por meio de três técnicas geoestatísticas: krigagem ordinária, cokrigagem e simulação condicional por bandas rotativas. Para aumentar a base de dados de valores de K, há um tratamento estatístico dos dados conhecidos. O método de interpolação matemática (krigagem ordinária) e o estocástico (simulação condicional por bandas rotativas) são aplicados para estimar os valores de K diretamente, enquanto que os métodos de krigagem ordinária combinada com regressão linear e cokrigagem permitem incorporar valores de capacidade específica (Q/s) como variável secundária. Adicionalmente, a cada método geoestatístico foi aplicada a técnica de desagrupamento por célula para comparar a sua capacidade de melhorar a performance dos métodos, o que pode ser avaliado por meio da validação cruzada. Os resultados dessas abordagens geoestatísticas indicam que os métodos de simulação condicional por bandas rotativas com a técnica de desagrupamento e de krigagem ordinária combinada com regressão linear sem a técnica de desagrupamento são os mais adequados para as áreas do SAG (rho=0.55) e do SAB (rho=0.44), respectivamente. O tratamento estatístico e a técnica de desagrupamento usados nesse trabalho revelaram-se úteis ferramentas auxiliares para os métodos geoestatísticos.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
In this work, kriging with covariates is used to model and map the spatial distribution of salinity measurements gathered by an autonomous underwater vehicle in a sea outfall monitoring campaign aiming to distinguish the effluent plume from the receiving waters and characterize its spatial variability in the vicinity of the discharge. Four different geostatistical linear models for salinity were assumed, where the distance to diffuser, the west-east positioning, and the south-north positioning were used as covariates. Sample variograms were fitted by the Mat`ern models using weighted least squares and maximum likelihood estimation methods as a way to detect eventual discrepancies. Typically, the maximum likelihood method estimated very low ranges which have limited the kriging process. So, at least for these data sets, weighted least squares showed to be the most appropriate estimation method for variogram fitting. The kriged maps show clearly the spatial variation of salinity, and it is possible to identify the effluent plume in the area studied. The results obtained show some guidelines for sewage monitoring if a geostatistical analysis of the data is in mind. It is important to treat properly the existence of anomalous values and to adopt a sampling strategy that includes transects parallel and perpendicular to the effluent dispersion.
Resumo:
The nitrogen dioxide is a primary pollutant, regarded for the estimation of the air quality index, whose excessive presence may cause significant environmental and health problems. In the current work, we suggest characterizing the evolution of NO2 levels, by using geostatisti- cal approaches that deal with both the space and time coordinates. To develop our proposal, a first exploratory analysis was carried out on daily values of the target variable, daily measured in Portugal from 2004 to 2012, which led to identify three influential covariates (type of site, environment and month of measurement). In a second step, appropriate geostatistical tools were applied to model the trend and the space-time variability, thus enabling us to use the kriging techniques for prediction, without requiring data from a dense monitoring network. This method- ology has valuable applications, as it can provide accurate assessment of the nitrogen dioxide concentrations at sites where either data have been lost or there is no monitoring station nearby.
Resumo:
Estimation of the spatial statistics of subsurface velocity heterogeneity from surface-based geophysical reflection survey data is a problem of significant interest in seismic and ground-penetrating radar (GPR) research. A method to effectively address this problem has been recently presented, but our knowledge regarding the resolution of the estimated parameters is still inadequate. Here we examine this issue using an analytical approach that is based on the realistic assumption that the subsurface velocity structure can be characterized as a band-limited scale-invariant medium. Our work importantly confirms recent numerical findings that the inversion of seismic or GPR reflection data for the geostatistical properties of the probed subsurface region is sensitive to the aspect ratio of the velocity heterogeneity and to the decay of its power spectrum, but not to the individual values of the horizontal and vertical correlation lengths.