920 resultados para Geometric Goppa Codes
Resumo:
We reinterpret the state space dimension equations for geometric Goppa codes. An easy consequence is that if deg G less than or equal to n-2/2 or deg G greater than or equal to n-2/2 + 2g then the state complexity of C-L(D, G) is equal to the Wolf bound. For deg G is an element of [n-1/2, n-3/2 + 2g], we use Clifford's theorem to give a simple lower bound on the state complexity of C-L(D, G). We then derive two further lower bounds on the state space dimensions of C-L(D, G) in terms of the gonality sequence of F/F-q. (The gonality sequence is known for many of the function fields of interest for defining geometric Goppa codes.) One of the gonality bounds uses previous results on the generalised weight hierarchy of C-L(D, G) and one follows in a straightforward way from first principles; often they are equal. For Hermitian codes both gonality bounds are equal to the DLP lower bound on state space dimensions. We conclude by using these results to calculate the DLP lower bound on state complexity for Hermitian codes.
Resumo:
In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight $t\leq 2r$, i.e., whose minimum Hamming distance is $2^{2}r+1$.
Resumo:
A Goppa code is described in terms of a polynomial, known as Goppa polynomial, and in contrast to cyclic codes, where it is difficult to estimate the minimum Hamming distance d from the generator polynomial. Furthermore, a Goppa code has the property that d ≥ deg(h(X))+1, where h(X) is a Goppa polynomial. In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm.
Resumo:
Let g be the genus of the Hermitian function field H/F(q)2 and let C-L(D,mQ(infinity)) be a typical Hermitian code of length n. In [Des. Codes Cryptogr., to appear], we determined the dimension/length profile (DLP) lower bound on the state complexity of C-L(D,mQ(infinity)). Here we determine when this lower bound is tight and when it is not. For m less than or equal to n-2/2 or m greater than or equal to n-2/2 + 2g, the DLP lower bounds reach Wolf's upper bound on state complexity and thus are trivially tight. We begin by showing that for about half of the remaining values of m the DLP bounds cannot be tight. In these cases, we give a lower bound on the absolute state complexity of C-L(D,mQ(infinity)), which improves the DLP lower bound. Next we give a good coordinate order for C-L(D,mQ(infinity)). With this good order, the state complexity of C-L(D,mQ(infinity)) achieves its DLP bound (whenever this is possible). This coordinate order also provides an upper bound on the absolute state complexity of C-L(D,mQ(infinity)) (for those values of m for which the DLP bounds cannot be tight). Our bounds on absolute state complexity do not meet for some of these values of m, and this leaves open the question whether our coordinate order is best possible in these cases. A straightforward application of these results is that if C-L(D,mQ(infinity)) is self-dual, then its state complexity (with respect to the lexicographic coordinate order) achieves its DLP bound of n /2 - q(2)/4, and, in particular, so does its absolute state complexity.
Resumo:
Communication is the process of transmitting data across channel. Whenever data is transmitted across a channel, errors are likely to occur. Coding theory is a stream of science that deals with finding efficient ways to encode and decode data, so that any likely errors can be detected and corrected. There are many methods to achieve coding and decoding. One among them is Algebraic Geometric Codes that can be constructed from curves. Cryptography is the science ol‘ security of transmitting messages from a sender to a receiver. The objective is to encrypt message in such a way that an eavesdropper would not be able to read it. A eryptosystem is a set of algorithms for encrypting and decrypting for the purpose of the process of encryption and decryption. Public key eryptosystem such as RSA and DSS are traditionally being prel‘en‘ec| for the purpose of secure communication through the channel. llowever Elliptic Curve eryptosystem have become a viable altemative since they provide greater security and also because of their usage of key of smaller length compared to other existing crypto systems. Elliptic curve cryptography is based on group of points on an elliptic curve over a finite field. This thesis deals with Algebraic Geometric codes and their relation to Cryptography using elliptic curves. Here Goppa codes are used and the curves used are elliptic curve over a finite field. We are relating Algebraic Geometric code to Cryptography by developing a cryptographic algorithm, which includes the process of encryption and decryption of messages. We are making use of fundamental properties of Elliptic curve cryptography for generating the algorithm and is used here to relate both.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we introduced new construction techniques of BCH, alternant, Goppa, Srivastava codes through the semigroup ring B[X; 1 3Z0] instead of the polynomial ring B[X; Z0], where B is a finite commutative ring with identity, and for these constructions we improve the several results of [1]. After this, we present a decoding principle for BCH, alternant and Goppa codes which is based on modified Berlekamp-Massey algorithm. This algorithm corrects all errors up to the Hamming weight t ≤ r/2, i.e., whose minimum Hamming distance is r + 1.
Resumo:
Let B[X; S] be a monoid ring with any fixed finite unitary commutative ring B and is the monoid S such that b = a + 1, where a is any positive integer. In this paper we constructed cyclic codes, BCH codes, alternant codes, Goppa codes, Srivastava codes through monoid ring . For a = 1, almost all the results contained in [16] stands as a very particular case of this study.
Resumo:
In 2002, van der Geer and van der Vlugt gave explicit equations for an asymptotically good tower of curves over the field F8. In this paper, we will present a method for constructing Goppa codes from these curves as well as explicit constructions for the third level of the tower. The approach is to find an associated plane curve for each curve in the tower and then to use the algorithms of Haché and Le Brigand to find the corresponding Goppa codes.
Resumo:
This work studies the turbo decoding of Reed-Solomon codes in QAM modulation schemes for additive white Gaussian noise channels (AWGN) by using a geometric approach. Considering the relations between the Galois field elements of the Reed-Solomon code and the symbols combined with their geometric dispositions in the QAM constellation, a turbo decoding algorithm, based on the work of Chase and Pyndiah, is developed. Simulation results show that the performance achieved is similar to the one obtained with the pragmatic approach with binary decomposition and analysis.
Resumo:
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.
Resumo:
The techniques of algebraic geometry have been widely and successfully applied to the study of linear codes over finite fields since the early 1980's. Recently, there has been an increased interest in the study of linear codes over finite rings. In this thesis, we combine these two approaches to coding theory by introducing and studying algebraic geometric codes over rings.
Resumo:
Cryptosystem using linear codes was developed in 1978 by Mc-Eliece. Later in 1985 Niederreiter and others developed a modified version of cryptosystem using concepts of linear codes. But these systems were not used frequently because of its larger key size. In this study we were designing a cryptosystem using the concepts of algebraic geometric codes with smaller key size. Error detection and correction can be done efficiently by simple decoding methods using the cryptosystem developed. Approach: Algebraic geometric codes are codes, generated using curves. The cryptosystem use basic concepts of elliptic curves cryptography and generator matrix. Decrypted information takes the form of a repetition code. Due to this complexity of decoding procedure is reduced. Error detection and correction can be carried out efficiently by solving a simple system of linear equations, there by imposing the concepts of security along with error detection and correction. Results: Implementation of the algorithm is done on MATLAB and comparative analysis is also done on various parameters of the system. Attacks are common to all cryptosystems. But by securely choosing curve, field and representation of elements in field, we can overcome the attacks and a stable system can be generated. Conclusion: The algorithm defined here protects the information from an intruder and also from the error in communication channel by efficient error correction methods.