995 resultados para Geological modeling


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aiming at the character of Bohaii Sea area and the heterogeneity of fluvial facies reservoir, litho-geophysics experiments and integrated research of geophysical technologies are carried out. To deal with practical problems in oil fields of Bohai area, such as QHD32-6, Southern BZ25-1 and NP35-2 et al., technology of reservoir description based on seismic data and reservoir geophysical methods is built. In this dissertation, three points are emphasized: ①the integration of multidiscipline; ②the application of new methods and technologies; ③the integration of quiescent and dynamic data. At last, research of geology modeling and reservoir numerical simulation based on geophysical data are integrated. There are several innovative results and conclusion in this dissertation: (1)To deal with problems in shallow sea area where seismic data is the key data, a set of technologies for fine reservoir description based on seismic data in Bohai Sea area are built. All these technologies, including technologies of stratigraphic classification, sedimentary facies identification, structure fine characterization, reservoir description, fluid recognition and integration of geological modeling& reservoir numerical simulation, play an important role in the hydrocarbon exploration and development. In the research of lithology and hydrocarbon-bearing condition, petrophysical experiment is carried out. Outdoors inspection and experiment test data are integrated in seismic forward modeling& inversion research. Through the research, the seismic reflection rules of fluid in porosity are generated. Based on all the above research, seismic data is used to classify rock association, identify sedimentary facies belts and recognition hydrocarbon-bearing condition of reservoir. In this research, the geological meaning of geophysical information is more clear and the ambiguity of geophysical information is efficiently reduced, so the reliability in hydrocarbon forecasting is improved. The methods of multi-scales are developed in microfacies research aiming at the condition of shallow sea area in Bohai Sea: ① make the transformation from seismic information to sedimentary facies reality by discriminant analysis; ②in research of planar sedimentary facies, make microfacies research on seismic scale by technologies integration of seismic multi-attributes analysis& optimization, strata slicing and seismic waveform classification; ③descript the sedimentary facies distribution on scales below seismic resolution with the method of stochastic modeling. In the research of geological modeling and reservoir numerical simulation, the way of bilateral iteration between modeling and numerical simulation is carried out in the geological model correction. This process include several steps: ①make seismic forward modeling based on the reservoir numerical simulation results and geological models; ②get trend residual of forward modeling and real seismic data; ③make dynamic correction of the model according to the above trend residual. The modern integration technology of reservoir fine description research in Bohai Sea area, which is developed in this dissertation, is successfully used in (1)the reserve volume evaluation and development research in BZ25-1 oil field and (2)the tracing while drilling research in QHD32-6 oil field. These application researches show wide application potential in hydrocarbon exploration and development research in other oil fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is based on the research project of Study on the Geological Characteristics and Remaining Oil Distribution Law of Neogene Reservoirs in Liunan Area, which is one of the key research projects set by PetroChina Jidong Oilfield Company in 2006. The determination of remaining oil distribution and its saturation changes are the most important research contents for the development and production modification of oilfields in high water-cut phases. Liunan oilfield, located in Tangshan of Hebei Province geographically and in Gaoliu structural belt of Nanpu sag in Bohai Bay Basin structurally, is one of the earliest fields put into production of Jidong oilfield. Focusing on the development problems encountered during the production of the field, this thesis establishes the fine geological reservoir model through the study of reservoir properties such as fine beds correlation, sedimentary facies, micro structures, micro reservoir architecture, flow units and fluid properties. Using routine method of reservoir engineering and technology of reservoir numerical modeling, remaining oil distribution in the target beds of Liunan area is predicted successfully, while the controling factors of remaining oil distribution are illustrated, and the model of remaining oil distribution for fault-block structure reservoirs is established. Using staged-subdivision reservoir correlation and FZI study, the Strata in Liunan Area is subdivided step by step; oil sand body data-list is recompiled; diagram databases are established; plane and section configuration of monolayer sandstone body, and combination pattern of sandstone bodys are summarized. The study of multi-level staged subdivision for sedimentary micro-facies shows that the Lower member of Minghuazhen formation and the whole Guantao formation in Liunan Area belong to meandering river and braided river sedimentary facies respectively, including 8 micro facies such as after point bar, channel bar, channel, natural levee, crevasse splay, abandoned channel, flood plain and flood basin. Fine 3D geological modeling is performed through the application of advanced software and integration of geological, seismic logging and reservoir engineering data. High resolution numerical simulation is performed with a reserve fitting error less than 3%, an average pressure fitting fluctuation range lower than 2Mpa and an accumulate water cut fitting error less than 5%. In this way, the distribution law of the target reservoir in the study area is basically recognized. Eight major remaining oil distribution models are established after analysis of production status and production features in different blocks and different layers. In addition, fuzzy mathematics method is used to the integreted evaluation and prediction of abundant remaining oil accumulation area in major production beds and key sedimentary time units of the shallow strata in Liunan Area and corresponding modification comments are put forward. In summary, the establishment of fine reservoir geological model, reservoir numerical simulation and distribution prediction of remaining oil make a sound foundation for further stimulation of oilfield development performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the intermediary and later stage of oil field development, remaining oil disperses fiercely, the contradiction in the layer has become the main problem and the distribution of remaining oil is transforming to the difference of single sand-body. So, the fine description research of reservoir is becoming a tendency and the methods of remaining oil research need new developments. In the research of “The Single-sand-body Architectural Element and Potentiality Analysis Research of Meandering River, GuDao Oil Field”, the research principle is analytical hierarchy process and schema prescription what are reservoir fine description methods under the condition of dense well pattern. The knowledge of regional sedimentary system and sedimentary facies is the foundation of this research. According to the 3D distribution model of the microfacies sand-body of fluvial facies, stratigraphic unit classification & coenocorrelation of 154 wells are completed in the research of meandering river sand-body in Ng3-4. In this research, the 3D distribution of microfacies sand-body in the main layers are settled. The architectural element model of Ng4 point bar is analysed using the drill core and FMI data. According to the overgrow model of point bar, the surfaces of lateral accretion is traced and the architectural element model of point bar is settled. In the research, the control of micro-facies sand-body of meandering river to the distribution of remaining oil is analysed and the potential area is proposed. All these will play an important role in the development of GuDao oil field. In this research, abundant of logging data, drill core data and production performance data are used to analyse the contributing factor of single sand-body in the Ng3-4 meandering river. Using the technology of geological modeling, all that are researched including the 3D distribution scales of meandering river point bar, the control affection of inner lateral accretion layer to the distribution of oil & gas and remaining. Then, the way of remaining oil development in the sand-body of meandering river is improved. The innovation of the research technology includes (1) the presentation of the conception and research methods of micro-facies sand-body (2) enriching the content of reservoir architectural element research and (3) to renew the research method of remaining oil analysis. The research has practiced with obvious effect.(1)It is deepened into understand the river facies reservoir construction of Gudao oil field, By Building the reservoir construction and studying the effect of diffent deposit or geological interface to fluid partition and to the distribution of the remaining oil, we improved the understanding to the distribution of the remaining oil;(2)By building the distribution mod of the remaining oil in the reservoir construction and making the remaining oil description detailed,the development direction of old oil field is more clear;(3)Expanded the application scales of the horizontal well and enhanced the application effects of the horizontal well technique , we designed and drilled 23 ports horizontal wells in all , the cumulative hydrocarbon production is 10.6*104 t;(4) According to the findings of the internal building structure in reservoir of the fluvial facies in the region of interest, and uniting the injection/production corresponding states、the producing history and the dynamic monitoring documents of the oil/water wells in the flooding units , we researched the residual oil distribution in the point bar , and found the distribution regular patterns of the remaining oil, and comprehended the distribution of the remaining oil . In base of that , we proceeded the optimizing designs of the oil well potentialities , and advanced the effect of the treatment potentials . It is proved that , it was very important that internal building structure research of the single sand body of reservoir for guiding the high efficiency potentialities of the remaining oil in the high water cut stage .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Junggar Basin has a large amount of recoverable reserves, However, due to the unfavorable factors, such as bad seismic data quality, complex structure with many faults and less wells, the exploration of oil and gas is still relatively limited, so advanced theoretical guidance and effective technical supports are desirable. Based on the theories of sedimentology, as well as comprehensive studies of outcrops, seismic data, drilling data and setting of this area, the paper establishes the isochronous correlation framework, and analyzes the sedimentary facies types and provenance direction, and obtains the profile and plain maps of the sedimentary facies combined with the logging constrained inversion. Then the paper analyzes the reservoir controlling factors, reservoir lithology attribute, 4-property relationship and sensibility based on the sedimentary facies research, and sets up a 3D geological model using facies controlled modeling. Finally, the paper optimizes some target areas with the conclusions of reservoir, structure and reservoir formation.Firstly, the paper establishs the isochronous correlation framework by the seismic data, drilling data and setting of this area. The sedimentary facies in Tai13 well block are braided river and meandering river according to the analysis of the lithology attribute, logging facies and sedimentary structure attribute of outcrop. The concept of “wetland” is put forward for the first time. The provenance direction of Badaowan and Qigu formation is obtained by the geology setting, sedimentary setting and paleocurrent direction. The paper obtains the profile and plain maps of the sedimentary facies from the sand value of the wells and the sand thickness maps from the logging constrained inversion. Then, this paper takes characteristics and control factors of the Jurassic reservoirs analysis on thin section observation, scanning transmission electron microscope observation and find out the petrology characteristics of reservoir, space types of reservoir and lithofacies division. In this area, primary pores dominate in the reservoir pores, which believed that sedimentation played the most important roles of the reservoir quality and diagenesis is the minor factor influencing secondary porosity. Using stochastic modeling technique,the paper builds quantitative 3-D reservoir Parameter. Finally, combined the study of structure and reservoir formation, the reservoir distribution regularity is concluded: (a) structures control the reservoir formation and accumulation. (b) Locating in the favorable sedimentary facies belt. And the area which meets these conditions mentioned above is a good destination for exploration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a kind of special lithologic ones, Igneous rock oil and gas pool is more and more paid attention, and it has different forming condition and distribution from conventional ones, such as various terrane distribution types, serious reservoir anisotropy, complicated hydrocarbon-bearing, so there is not successful experience to follow for exploration and development of this complex subtle oil and gas pool at present. For an example of Igneous oil and gas pool of Luo151 area in Zhanhua seg, Eastern China, this article study the difficult problem, including petrologic nd lithofacies analysis, Origin, invasion age and times of Igneous rock, reservoir anisotropy, Geological Modeling, Igneous reservoir synthesis evaluation. forming condition and distribution are studied synthetically, and an integrated method to predict igneous rock oil and gas pool is formed, which is evaluated by using development data. The Igneous rock is mainly diabase construction in Luo151 area of Zhanhua Sag, and petrologic types include carbonaceous slate, hornfels, and diabases. Based on analyzing synthetically petrologic component, texture and construct, 4 lithofacies zones, such as carbonaceous slate subfacies, hornfels subfacies containing cordierite and grammite, border subfacies and central subfacies, are divided in the diabase and wall rock. By studying on isotopic chronology, terrane configuration and imaging logging data, the diabase intrusion in Zhanhua Sag is formed by tholeiite magma emplacing in Shahejie formation stratum on the rift tension background Lower Tertiary in North China. The diabase intrusion of Luo151 is composed possibly of three periods magma emplacement. There is serious anisotropy in the diabase reservoirs of Luo151 in Zhanhua Sag. Fracture is primary reservoir space, which dominated by tensile fracture in high obliquity, and the fracture zones are mainly developed round joint belt of igneous rock and wall rock and position of terrane thickness changing rapidly. The generation materials of the reservoirs in Luo151 igneous oil pools consist of Intergranular micropore hornfels, condensate blowhole-solution void diabase condensate edge, the edge and center of the condensate seam diabase, of which are divided into horizontal, vertical and reticulated cracks according fracture occurrence. Based on the above research, a conceptual model of igneous rock reservoir is generated, which is vertically divided into 4 belts and horizontally 3 areas. It is built for the first time that classification evaluation pattern of igneous rock reservoir in this area, and 3 key wells are evaluated. The diabase construction is divided into grammite hornfels micropore type and diabase porous-fracture type reservoirs. The heavy mudstone layers in Third Member of Shahejie formation (Es3) provide favorable hydrocarbon source rock and cap formation, diabase and hornfels belts serve as reservoirs, faults and microcracks in the wall rocks as type pathways for oil and gas migration. The time of diabase invasion was about in the later deposition period of Dongying Formation and the middle of that of Guantao Formation, the oil generated from oil source rock of Es3 in the period of the Minghuazhen formation and is earlier more than the period of diabase oil trap and porous space forming. Based on geological and seismic data, the horizon of igneous rocks is demarcated accurately by using VSP and synthetic seismogram, and the shape distribution and continuity of igneous rocks are determined by using cross-hole seismic technology. The reservoir capability is predicted by using logging constraining inversion and neural network technology. An integrated method to predict igneous rock oil and gas pool is formed. The study is appraised by using development data. The result show the reservoir conceptual model can guide the exploration and development of oil pool, and the integrated method yielded marked results in the production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis mainly studies the technologies of 3-D seismic visualization and Graphic User Interface of seismic processing software. By studying Computer Graphics and 3-D geological modeling, the author designs and implements the visualization module of seismic data processing software using OpenGL and Motif. Setting seismic visualization flow as the subject, NURBS surface approximation and Delaunay Triangulation as the two different methods, the thesis discusses the key algorithms and technologies of seismic visualization and attempts to apply Octree Space Partitioning and Mip Mapping to enhance system performance. According to the research mentioned above, in view of portability and scalability, the author adopts Object-oriented Analysis and Object-oriented Design, uses standard C++ as programming language, OpenGL as 3-D graphics library and Motif as GUI developing tool to implement the seismic visualization framework on SGI Irix platform. This thesis also studies the solution of fluid equations in porous media. 2-D alternating direction implicit procedure has been turned into 3-D successive over relaxation iteration, which possesses such virtues as faster computing speed, faster convergence rate, better adaptability to heterogeneous media and less memory demanding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dynamic prediction of complex reservoir development is one of the important research contents of dynamic analysis of oil and gas development. With the increase development of time, the permeabilities and porosities of reservoirs and the permeability of block reservoir at its boundaries are dynamically changing. How to track the dynamic change of permeability and porosity and make certain the permeability of block reservoir at its boundary is an important practical problem. To study developing dynamic prediction of complex reservoir, the key problem of research of dynamic prediction of complex reservoir development is realizing inversion of permeability and porosity. To realize the inversion, first of all, the fast forward and inverse method of 3-dimension reservoir simulation must be studied. Although the inversion has been widely applied to exploration and logging, it has not been applied to3-dimension reservoir simulation. Therefore, the study of fast forward and inverse method of 3-dimension reservoir simulation is a cutting-edge problem, takes on important realistic signification and application value. In this dissertation, 2-dimension and 3-dimension fluid equations in porous media are discretized by finite difference, obtaining finite difference equations to meet the inner boundary conditions by Peaceman's equations, giving successive over relaxation iteration of 3-dimension fluid equations in porous media and the dimensional analysis. Several equation-solving methods are compared in common use, analyzing its convergence and convergence rate. The alternating direction implicit procedure of 2-dimension has been turned into successive over relaxation iteration of alternating direction implicit procedure of 3-dimension fluid equations in porous media, which possesses the virtues of fast computing speed, needing small memory of computer, good adaptability for heterogeneous media and fast convergence rate. The geological model of channel-sandy reservoir has been generated with the help of stochastic simulation technique, whose cross sections of channel-sandy reservoir are parabolic shapes. This method makes the hard data commendably meet, very suit for geological modeling of containing complex boundary surface reservoir. To verify reliability of the method, theoretical solution and numerical solution are compared by simplifying model of 3-dimension fluid equations in porous media, whose results show that the only difference of the two pressure curves is that the numerical solution is lower than theoretical at the wellbore in the same space. It proves that using finite difference to solve fluid equations in porous media is reliable. As numerical examples of 3-dimension heterogeneous reservoir of the single-well and multi-well, the pressure distributions have been computed respectively, which show the pressure distributions there are clearly difference as difference of the permeabilities is greater than one order of magnitude, otherwise there are no clearly difference. As application, the pressure distribution of the channel-sandy reservoir have been computed, which indicates that the space distribution of pressure strongly relies on the direction of permeability, and is sensitive for space distributions of permeability. In this dissertation, the Peaceman's equations have been modified into solving vertical well problem and horizontal well problem simultaneously. In porous media, a 3D layer reservoir in which contain vertical wells and horizontal wells has been calculated with iteration. For channel-sandy reservoir in which there are also vertical wells and horizontal wells, a 3D transient heterogeneous fluid equation has been discretized. As an example, the space distribution of pressure has been calculated with iteration. The results of examples are accord with the fact, which shows the modification of Peaceman's equation is correct. The problem has been solved in the space where there are vertical and horizontal wells. In the dissertation, the nonuniform grid permeability integration equation upscaling method, the nonuniform grid 2D flow rate upscaling method and the nonuniform grid 3D flow rate upscaling method have been studied respectively. In those methods, they enhance computing speed greatly, but the computing speed of 3D flow rate upscaling method is faster than that of 2D flow rate upscaling method, and the precision of 3D flow rate upscaling method is better than that of 2D flow rate upscaling method. The results also show that the solutions of upscaling method are very approximating to that of fine grid blocks. In this paper, 4 methods of fast adaptive nonuniform grid upscaling method of 3D fluid equations in porous media have been put forward, and applied to calculate 3D heterogeneous reservoir and channel-sandy reservoir, whose computing results show that the solutions of nonuniform adaptive upscaling method of 3D heterogeneous fluid equations in porous media are very approximating to that of fine grid blocks in the regions the permeability or porosity being abnormity and very approximating to that of coarsen grid blocks in the other region, however, the computing speed of adaptive upscaling method is 100 times faster than that of fine grid block method. The formula of sensitivity coefficients are derived from initial boundary value problems of fluid equations in porous media by Green's reciprocity principle. The sensitivity coefficients of wellbore pressure to permeability parameters are given by Peaceman's equation and calculated by means of numerical calculation method of 3D transient anisotropic fluid equation in porous media and verified by direct method. The computing results are in excellent agreement with those obtained by the direct method, which shows feasibility of the method. In the dissertation, the calculating examples are also given for 3D reservoir, channel-sandy reservoir and 3D multi-well reservoir, whose numerical results indicate: around the well hole, the value of the sensitivity coefficients of permeability is very large, the value of the sensitivity coefficients of porosity is very large too, but the sensitivity coefficients of porosity is much less than the sensitivity coefficients of permeability, so that the effect of the sensitivity coefficients of permeability for inversion of reservoir parameters is much greater than that of the sensitivity coefficients of porosity. Because computing the sensitivity coefficients needs to call twice the program of reservoir simulation in one iteration, realizing inversion of reservoir parameters must be sustained by the fast forward method. Using the sensitivity coefficients of permeability and porosity, conditioned on observed valley erosion thickness in wells (hard data), the inversion of the permeabilities and porosities in the homogeneous reservoir, homogeneous reservoir only along the certain direction and block reservoir are implemented by Gauss-Newton method or conjugate gradient method respectively. The results of our examples are very approximating to the real data of permeability and porosity, but the convergence rate of conjugate gradient method is much faster than that of Gauss-Newton method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in Gubei depression, this paper builds high resolution sequence stratigraphic structure, sedimentary system, sandbody distribution, the effect of tectonic in sequence and sedimentary system evolution and model of tectonic-lithofacies. The pool formation mechanism of subtle trap is developed. There are some conclusions and views as follows. 1.With the synthetic sequence analysis of drilling, seismic, and well log, the highly resolution sequence structure is build in Gubei depression. They are divided two secondary sequences and seven three-order sequences in Shahejie formation. They are include 4 kinds of system traces and 7 kinds of sedimentary systems which are alluvial fan, under water fan, alluvial fan and fan-delta, fan-delta, lacustrine-fan, fluvial-delta-turbidite, lakeshore beach and bar, and deep lake system. Sandbody distribution is show base on third order sequence. 2.Based on a lot of experiment and well log, it is point out that there are many types of pore in reservoir with the styles of corrosion pore, weak cementing, matrix cementing, impure filling, and 7 kinds of diagenetic facies. These reservoirs are evaluated by lateral and profile characteristics of diagenetic facies and reservoir properties. 3.The effect of simultaneous faulting on sediment process is analyzed from abrupt slope, gentle slope, and hollow zone. The 4 kinds of tectonic lithofacies models are developed in several periods in Gubei depression; the regional distribution of subtle trap is predicted by hydro accumulation characteristics of different tectonic lithofacies. 4.There are 4 types of compacting process, which are normal compaction, abnormal high pressure, abnormal low pressure and complex abnormal pressure. The domain type is normal compaction that locates any area of depression, but normal high pressure is located only deep hollow zone (depth more than 3000m), abnormal low pressures are located gentle slope and faulted abrupt slope (depth between 1200~2500m). 5.Two types dynamic systems of pool formation (enclosed and partly enclosed system) are recognized. They are composed by which source rocks are from Es3 and Es4, cap rocks are deep lacustrine shale of Esl and Es3, and sandstone reservoirs are 7 kinds of sedimentary system in Es3 and Es4. According to theory of petroleum system, two petroleum systems are divided in Es3 and Es4 of Gubei depression, which are high or normal pressure self-source system and normal or low pressure external-source system. 6.There are 3 kinds of combination model of pool formation, the first is litholgical pool of inner depression (high or normal pressure self-source type), the second is fault block or fault nose pool in marginal of depression (normal type), the third is fault block-lithological pool of central low lifted block (high or normal pressure type). The lithological pool is located central of depression, other pool are located gentle or abrupt slope that are controlled by lithological, faulting, unconfirmed. 7.This paper raise a new technique and process of exploration subtle trap which include geological modeling, coring description and logging recognition, and well log constrained inversion. These are composed to method and theory of predicting subtle trap. Application these methods and techniques, 6 hydro objects are predicted in three zone of depression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study of 3D visualization technology of engineering geology and its application to engineering is a cross subject which includes geosciences, computer, software and information technology. Being an important part of the secondary theme of National Basic Research Program of China (973 Program) whose name is Study of Multi-Scale Structure and Occurrence Environment of Complicated Geological Engineering Mass(No.2002CB412701), the dissertation involves the studies of key problems of 3D geological modeling, integrated applications of multi-format geological data, effective modeling methods of complex approximately layered geological mass as well as applications of 3D virtual reality information management technology.The main research findings are listed below:Integrated application method of multi-format geological data is proposed,which has solved the integrated application of drill holes, engineering geology plandrawings, sectional drawings and cutting drawings as well as exploratory trenchsketch. Its application can provide as more as possible fundamental data for 3Dgeological modeling.A 3D surface construction method combined Laplace interpolation points withoriginal points is proposed, so the deformation of 3D model and the crossing error ofupper and lower surface of model resulted from lack of data when constructing alaminated stratum can be eliminated.3D modeling method of approximately layered geological mass is proposed,which has solved the problems of general modeling method based on the sections or points and faces when constructing terrain and concordant strata.The 3D geological model of VII dam site of Xiangjiaba hydropower stationhas been constructed. The applications of 3D geological model to the auto-plotting ofsectional drawing and the converting of numerical analysis model are also discussed.3D virtual reality information integrated platform is developed, whose mostimportant character is that it is a software platform having the functions of 3D virtualreality flying and multi-format data management simultaneously. Therefore, theplatform can load different 3D model so as to satisfy the different engineeringdemands.The relics of Aigong Cave of Longyou Stone Caves are recovered. Thereinforcement plans of 1# and 2# cave in phoenix hill also be expressed. The intuitiveexpression provided decision makers and designers a very good environment.The basic framework and specific functions of 3D geological informationsystem are proposed.The main research findings in the dissertation have been successfully applied to some important engineering such as Xiangjiaba hydropower station, a military airport and Longyou Stone Caves etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kela-2 gas field in Tarim Basin is the main supply source for West-to-East Pipeline project, also the largest abnormally-pressured gas field discovered in China currently. The geological characterization, fine geological modeling and field development plan are all the world-class difficult problems. This work includes an integrated geological and gas reservoir engineering study using advanced technology and approaches, the scientific development plan of Kela-2 gas field as well as the optimizations of the drilling, production and surface schemes. Then, it's expected that the Kela-2 gas field can be developed high-efficiently.Kuche depression is one part of the thrust belt of the South Tianshan Mountains, Kela-2 field is located at the Kelasu structural zone in the north of Kuche depression. The field territory is heavily rugged with deeply cut gullies, complex geological underground structure, variable rock types, thrust structure development. Therefore, considerable efforts have been made to develop an integrated technique to acquire, process and interpret the seismic data in complicated mountain region. Consequently a set of seismic-related techniques in the complicated mountain region has been developed and successfully utilized to interpret the structure of Kela-2 gas field.The main reservoir depositional system of Kela 2 gas field is a platform - fan delta - braided river system. The reservoir rocks are medium-fine and extremely fine grained sandstones with high structure maturity and low composition maturity. The pore system structure is featured by medium-small pore, medium-fine throat and medium-low assortment. The reservoir of Kela-2 gas field is characteristic of medium porosity and medium permeability. The pay zone is very thick and its lateral distribution is stable with a good connection of sand body. The overpressure is caused mainly by the strongly tectonic squash activities, and other factors including the later rapid raise and compartment of the high-pressure fluid, the injection of high-pressure fluid into the reservoir.Based on the deliverability tests available, the average binomial deliverability equation is provided applicable for the overall field. The experimental results of rock stress-sensitive tests are employed to analyze the change trend of petrophysical properties against net confining stress, and establish the stress-based average deliverability equation. The results demonstrate the effect of rock deformation on the deliverability is limited to less than 5% in the early period of Kela-2 gas field, indicating the insignificant effect on deliverability of rock deformation.In terms of the well pattern comparisons and development planning optimizations, it is recommended that the producers should be located almost linearly along the structural axis. A total of 9 producers have a stable gas supply volume of 10.76 BCMPY for 17 years. For Kela-2 gas field the total construction investment is estimated at ¥7,697,690,000 RMB with the internal earning rate of 25.02% after taxation, the net present value of ¥7,420,160,000 RMB and the payback period of 5.66 years. The high profits of this field development project are much satisfactory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this beginning of the XXI century, the Geology moves for new ways that demand a capacity to work with different information and new tools. It is within this context that the analog characterization has important in the prediction and understanding the lateral changes in the geometry and facies distribution. In the present work was developed a methodology for integration the geological and geophysical data in transitional recent deposits, the modeling of petroliferous reservoirs, the volume calculation and the uncertainties associate with this volume. For this purpose it was carried planialtimetric and geophysics (Ground Penetrating Radar) surveys in three areas of the Parnaíba River. With this information, it was possible to visualize the overlap of different estuary channels and make the delimitation of the channel geometry (width and thickness). For three-dimensional visualization and modeling were used two of the main reservoirs modeling software. These studies were performed with the collected parameters and the data of two reservoirs. The first was created with the Potiguar Basin wells data existents in the literature and corresponding to Açu IV unit. In the second case was used a real database of the Northern Sea. In the procedures of reservoirs modeling different workflows were created and generated five study cases with their volume calculation. Afterwards an analysis was realized to quantify the uncertainties in the geological modeling and their influence in the volume. This analysis was oriented to test the generating see and the analogous data use in the model construction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The geological modeling allows, at laboratory scaling, the simulation of the geometric and kinematic evolution of geological structures. The importance of the knowledge of these structures grows when we consider their role in the creation of traps or conduits to oil and water. In the present work we simulated the formation of folds and faults in extensional environment, through physical and numerical modeling, using a sandbox apparatus and MOVE2010 software. The physical modeling of structures developed in the hangingwall of a listric fault, showed the formation of active and inactive axial zones. In consonance with the literature, we verified the formation of a rollover between these two axial zones. The crestal collapse of the anticline formed grabens, limited by secondary faults, perpendicular to the extension, with a curvilinear aspect. Adjacent to these faults we registered the formation of transversal folds, parallel to the extension, characterized by a syncline in the fault hangingwall. We also observed drag folds near the faults surfaces, these faults are parallel to the fault surface and presented an anticline in the footwall and a syncline hangingwall. To observe the influence of geometrical variations (dip and width) in the flat of a flat-ramp fault, we made two experimental series, being the first with the flat varying in dip and width and the second maintaining the flat variation in width but horizontal. These experiments developed secondary faults, perpendicular to the extension, that were grouped in three sets: i) antithetic faults with a curvilinear geometry and synthetic faults, with a more rectilinear geometry, both nucleated in the base of sedimentary pile. The normal antithetic faults can rotate, during the extension, presenting a pseudo-inverse kinematics. ii) Faults nucleated at the top of the sedimentary pile. The propagation of these faults is made through coalescence of segments, originating, sometimes, the formation of relay ramps. iii) Reverse faults, are nucleated in the flat-ramp interface. Comparing the two models we verified that the dip of the flat favors a differentiated nucleation of the faults at the two extremities of the mater fault. V These two flat-ramp models also generated an anticline-syncline pair, drag and transversal folds. The anticline was formed above the flat being sub-parallel to the master fault plane, while the syncline was formed in more distal areas of the fault. Due the geometrical variation of these two folds we can define three structural domains. Using the physical experiments as a template, we also made numerical modeling experiments, with flat-ramp faults presenting variation in the flat. Secondary antithetic, synthetic and reverse faults were generated in both models. The numerical modeling formed two folds, and anticline above the flat and a syncline further away of the master fault. The geometric variation of these two folds allowed the definition of three structural domains parallel to the extension. These data reinforce the physical models. The comparisons between natural data of a flat-ramp fault in the Potiguar basin with the data of physical and numerical simulations, showed that, in both cases, the variation of the geometry of the flat produces, variation in the hangingwall geometry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)