994 resultados para Geological engineering
Resumo:
The purpose of this report is to serve as a written explanation of the accompanying geologic maps and columnar section. Each year the senior students in mining and geological engineering at the Montana School of Mines spend two weeks in the field where they learn the fundamentals of geologic mapping and related field studies. An additional week is spent at the school where maps are assembled, prints made, end other work is done in preparation for the writing of the report.
Resumo:
The engineer must have sufficient theoretical knowledge to be applied to solve specific problems, with the necessary capacity to simplify these approaches, and taking into account factors such as speed, simplicity, quality and economy. In Geology, its ultimate goal is the exploration of the history of the geological events through observation, deduction, reasoning and, in exceptional cases by the direct underground exploration or experimentation. Experimentation is very limited in Geology. Reproduction laboratory of certain phenomena or geological processes is difficult because both time and space become a large scale. For this reason, some Earth Sciences are in a nearly descriptive stage whereas others closest to the experimental, Geophysics and Geochemistry, have assimilated progress experienced by the physics and chemistry. Thus, Anglo-Saxon countries clearly separate Engineering Geology from Geological Engineering, i.e. Applied Geology to the Geological Engineering concepts. Although there is a big professional overlap, the first one corresponds to scientific approach, while the last one corresponds to a technological one. Applied Geology to Engineering could be defined as the Science and Applied Geology to the design, construction and performance of engineering infrastructures in and field geology discipline. There has been much discussion on the primacy of theory over practice. Today prevails the exaggeration of practice, but you get good workers and routine and mediocre teachers. This idea forgets too that teaching problem is a problem of right balance. The approach of the action lines on the European Higher Education Area (EHEA) framework provides for such balance. Applied Geology subject represents the first real contact with the physical environment with the practice profession and works. Besides, the situation of the topic in the first trace of Study Plans for many students implies the link to other subjects and topics of the career (tunnels, dams, groundwater, roads, etc). This work analyses in depth the justification of such practical trips. It shows the criteria and methods of planning and the result which manifests itself in pupils. Once practical trips experience developed, the objective work tries to know about results and changes on student’s motivation in learning perspective. This is done regardless of the outcome of their knowledge achievements assessed properly and they are not subject to such work. For this objective, it has been designed a survey about their motivation before and after trip. Survey was made by the Unidad Docente de Geología Aplicada of the Departamento de Ingeniería y Morfología del Terreno (Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid). It was completely anonymous. Its objective was to collect the opinion of the student as a key agent of learning and teaching of the subject. All the work takes place under new teaching/learning criteria approach at the European framework in Higher Education. The results are exceptionally good with 90% of student’s participation and with very high scores in a number of questions as the itineraries, teachers and visited places (range of 4.5 to 4.2 in a 5 points scale). The majority of students are very satisfied (average of 4.5 in a 5 points scale).
Resumo:
The Los Negritos porphyry copper deposit is located ~ 4 km to the northeast of Carmen de Andacollo Mine in the Chilean Cretaceous metallogenic belt. The mineralization is hosted in andesite of the Quebrada Marquesa Formation and a series of at least four early to intramineral porphyry intrusive rock types: plagioclase quartz biotite porphyry (P1b and P1a dated at 109.60± 0.75 Ma and 107.22± 0.40 Ma); plagioclase biotite porphyry (P2: 106.30 ± 0.47 Ma); and quartz plagioclase biotite porphyry (P3: 106.19 ± 0.42 Ma). These units are cut by late‐ to post‐mineral plagioclase‐hornblende porphyritic rocks (P4b: 106.20 ± 0.69 Ma and P4a: 106.50 ± 0.68 Ma). The earliest intrusive units (P1) were affected by an initial stage of K‐feldspar‐biotite alteration, with chalcopyrite, molybdenite (date at 108.5 ± 0.5 Ma) and gold (up to 0.11 ppm), and the surrounding volcanic host rock was overprinted by chlorite‐epidote dominated (propylitic) alteration. Subsequent to the P2 and P3 intrusion, these rocks were affected by albite and then a second stage of potassic alteration. The Ti and Ba contents in hydrothermal biotite are notably lower (typically Ti = 0.100‐0.144 a.p.f.u. and Ba = 0.001‐0.005 a.p.f.u) than in magmatic ones (generally Ti = 0.186‐0.222 a.p.f.u. and Ba = 0.014‐0.023 a.p.f.u.), and constitute an excellent discriminant of the nature of biotite. These early stages of alteration were overprinted by copper‐molybdenum bearing chlorite‐sericite alteration at 106.60 ± 0.5 Ma (Re‐Os age in molybdenite) and by quartz‐sericite‐pyrite veins (phyllic), respectively in the southwest and northeast areas. The average temperature associated with these two alteration facies is estimated around 305 °C. Weak albite‐calcite alteration, spatially associated with sulfosalts and distributed along the margins of P3, overprinted the phyllic facies. The intrusive rock units at the Los Negritos and Carmen de Andacollo deposits are geochemically classified as diorite to granodiorite with a calc‐alkaline magmatic affinity, and formed in a volcanic arc setting from partial melting of a metasomatized mantle wedge. They are interpreted to be cogenetic, and related to a common long‐lived magma chamber that emplaced during a period of tectonic inversion known as the Subhercynian, Peruvian or Pacific event.
Resumo:
Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.
Resumo:
This study presents the response of a vertically loaded pile in undrained clay considering spatially distributed undrained shear strength. The probabilistic study is performed considering undrained shear strength as random variable and the analysis is conducted using random field theory. The inherent soil variability is considered as source of variability and the field is modeled as two dimensional non-Gaussian homogeneous random field. Random field is simulated using Cholesky decomposition technique within the finite difference program and Monte Carlo simulation approach is considered for the probabilistic analysis. The influence of variance and spatial correlation of undrained shear strength on the ultimate capacity as summation of ultimate skin friction and end bearing resistance of pile are examined. It is observed that the coefficient of variation and spatial correlation distance are the most important parameters that affect the pile ultimate capacity.
Resumo:
Residential RC framed structures suffered heavily during the 2001 Bhuj earthquake in Gujarat, India. These types of structures also saw severe damage in other earthquakes such as the 1999 Kocaeli earthquake in Turkey and 921 Ji-Ji earthquake in Taiwan. In this paper the seismic response of residential structures was investigated using physical modelling. Idealised soft storey and top heavy, two degrees of freedom (2DOF) portal frame structures were developed and tested on saturated and dry sand models at 25 g using the Schofield Centre 10-m Beam Centrifuge. It was possible to recreate observed field behaviour using these models. As observed in many of the recent earthquakes, soft storey structures were found to be particularly vulnerable to seismic loads. Elastic response spectra methods are often used in the design of simple portal frame structures. The seismic risk of these structures can be significantly increased due to modifications such as removal of a column or addition of heavy water tanks on the roof. The experimental data from the dynamic centrifuge tests on such soft storey or top-heavy models was used to evaluate the predictions obtained from the response spectra. Response spectra were able to predict seismic response during small to moderate intensity earthquakes, but became inaccurate during strong earthquakes and when soil structure interaction effects became important. Re-evaluation of seismic risk of such modified structures is required and time domain analyses suggested by building codes such as IBC, UBC or NEHRP may be more appropriate. © Springer 2006.
Resumo:
Based on the features of soft soil in Tianjing Coastal New Developing Area, this kind of soil with different content of sand was researched systematically, according to the indoor experiment, about its characteristics of strength and deformation. The main results are summarized in the following: Firstly, on the basis of geological engineering investigation, the systemic experiments about the physical characteristics were conducted. The test soil samples were taken from the gray and gray-yellow silty soft soil which was formatted by near-shore marine sediment and marine-continental interactive sediment. The original condition of the sample soil was in saturation and the basic indexes are: liquid limit36.1%, plastic limit 18.8%, plasticity index. Then, the condensation characteristics of the soft soil were analyzed through high-pressure consolidation tests. The results show that,in various loading serials, the coefficient of compressibility under P=100kPa and 200kPa are all larger than 0.5MPa-1. So the sample soil is a kind of high-compressibility soil. Secondly, triaxial strength of undisturbed soil and remoulded soil was researched by using triaxial test. The types of stress-strain curve of both undisturbed and remoulded soil are the stress stabilization and softening type, which show the specific plastic character. Furthermore, the cohesion and friction angle of undisturbed soil changes, when the ambient pressure is different, instead of a stable value for all time; the cohesion and friction angle of remoulded soil changes with the compactness and sand-carrying capacity which is wholly higher than undisturbed soil. At last, the stress-strain results of both undisturbed and remoulded soil were normalized by using the ambient pressure as the normalization factor. The results show that, there are all some normalization characters in both undisturbed and remoulded soil, however, the feature of normalization of undisturbed soil is worse than the remoulded ones. The main reason is that the undisturbed samples are worse in equality and the unavoidable disturb through the process of sampling and experiments will also make them can not put up good normalization. Therefore, it is feasible to normalize the soil in Tianjing Coastal New Developing Area with the ambient pressure as normalization factor.
Resumo:
Synthetic Geology Information System (SGIS) is an important constituent part of the theory of Engineering Geomechanics Mate-Synthetic (EGMS), and is the information system more suited for the collection, storage, management, analysis and processing to the information coming from engineering geology,' geological engineering and geotechnical engineering. Its contents involve various works and methods of the investigation, design, and construction in different stages of the geological engineering. Engineering geological and three-dimensional modeling and visualization is the fundamental part of the SGIS, and is a theory, method and technique by which, adopting the computer graphics and image processing techniques, the data derived from engineering geological survey and the calculated results obtained from the geomechanical numerical simulation and analysis are converted to the graphics and images displayed on the computer screen and can be processed interactively. In this paper, the significance and realizing approaches of the three-dimensional modeling and visualization for the complex geological mass in the engineering geology are discussed and the methods of taking advantage of the interpolation and fitting for the scattered and field-surveyed data to simulate the geological layers, such as the topography and earth surface, the groundwater table and the stratum boundary, are researched into. At the mean time, in mind the characteristics of the structure of the basic data for three-dimensional modeling, its visual management can be resolved into the engineering surveyed database management module, plot parameter management module and data output module and the requirement for basic data management can be fulfilled. In the paper, the establishment and development of the three-dimensional geological information system are probed tentatively, and an instance of three-dimensional visual Engineering Distribution Information System (EDIS), theConstruction Management Information System for an airport, in which the functions, such as the real-time browse among the three-dimensional virtual-reality landscapes of the airport construction from start to finish, the information query to the airport facility and the building in the housing district and the recording and playback of the animation sets for the browse and the takeoff and landing of the planes, is developed by applying the component-mode three-dimensional virtual-reality geological information system (GIS) software development kits (SDK), so the three-dimensional visual management platform is provided for the airport construction. Moreover, in the gaper, integrated with the three-dimensional topography visualization and its application in the Sichuan-Tibet Highways, the method of the digital elevation model (DEM) data collection from the topographic maps is described, and the three-dimensional visualization and the roaming about the terrain along the highway are achieved through computer language programming. Understanding to the important role played by the varied and unique topographical condition in the gestation and germination of the highly-dense, frequently-arising and severely-endangered geological hazards can be deepened.
Resumo:
Study of 3D visualization technology of engineering geology and its application to engineering is a cross subject which includes geosciences, computer, software and information technology. Being an important part of the secondary theme of National Basic Research Program of China (973 Program) whose name is Study of Multi-Scale Structure and Occurrence Environment of Complicated Geological Engineering Mass(No.2002CB412701), the dissertation involves the studies of key problems of 3D geological modeling, integrated applications of multi-format geological data, effective modeling methods of complex approximately layered geological mass as well as applications of 3D virtual reality information management technology.The main research findings are listed below:Integrated application method of multi-format geological data is proposed,which has solved the integrated application of drill holes, engineering geology plandrawings, sectional drawings and cutting drawings as well as exploratory trenchsketch. Its application can provide as more as possible fundamental data for 3Dgeological modeling.A 3D surface construction method combined Laplace interpolation points withoriginal points is proposed, so the deformation of 3D model and the crossing error ofupper and lower surface of model resulted from lack of data when constructing alaminated stratum can be eliminated.3D modeling method of approximately layered geological mass is proposed,which has solved the problems of general modeling method based on the sections or points and faces when constructing terrain and concordant strata.The 3D geological model of VII dam site of Xiangjiaba hydropower stationhas been constructed. The applications of 3D geological model to the auto-plotting ofsectional drawing and the converting of numerical analysis model are also discussed.3D virtual reality information integrated platform is developed, whose mostimportant character is that it is a software platform having the functions of 3D virtualreality flying and multi-format data management simultaneously. Therefore, theplatform can load different 3D model so as to satisfy the different engineeringdemands.The relics of Aigong Cave of Longyou Stone Caves are recovered. Thereinforcement plans of 1# and 2# cave in phoenix hill also be expressed. The intuitiveexpression provided decision makers and designers a very good environment.The basic framework and specific functions of 3D geological informationsystem are proposed.The main research findings in the dissertation have been successfully applied to some important engineering such as Xiangjiaba hydropower station, a military airport and Longyou Stone Caves etc.
Resumo:
Resumo Resultado de um investimento em meios humanos e materiais no domínio da Geo-Engenharia, ao longo de quase três décadas, a Universidade de Évora detém hoje um reconhecimento junto dos empregadores que têm acolhido os alunos desta instituição nas suas empresas. Este trabalho destina-se a partilhar a experiência que a Universidade de Évora (UE) acumulou no Ensino e Formação em Geo-Engenharia, em contexto empresarial. O Curso de Licenciatura em Engenharia Geológica da Universidade de Évora (LEG), assim como mais dois cursos da UE são pioneiros em Portugal, na medida em que preveem nos seus planos curriculares a possibilidade de os alunos puderem realizar estágios em contexto de trabalho no âmbito de Unidades Curriculares do 6º Semestre dos respetivos Cursos. No caso do LEG, apôs um período intensivo de quatro a cinco semanas de formação na Universidade, seguem-se três semanas de estágio numa empresa a eleger entre as trinta e duas que até agora aceitaram estabelecer protocolos para este fim. Este processo repete-se duas vezes por semestre. Em alternativa, os alunos que não desejem frequentar estes estágios terão uma formação clássica na Universidade. Neste artigo, apresentam-se os resultados até agora alcançados com este ensino diferenciado. A adaptação ao modelo de Bologna dos ensinos de 1º e 2º Ciclo resultou num défice de formação curricular indispensável para o pleno exercício da profissão de Engenheiro Geólogo. As competências específicas adquiridas ao fim de cada ciclo foram indicadas pela Ordem dos Engenheiros que contudo ressalva a necessidade de uma formação em Engenharia no 1º Ciclo para reconhecer as competências a atribuir a cada graduado nos mestrados de Engenharia. A experiência de formação no 2º ciclo em Engenharia Geológica, onde sensivelmente metade dos alunos é externa a Universidade de Évora, é alvo de análise neste trabalho. Palavras-Chave: Ensino; Engenharia Geológica; Bolonha; Competências; Empregabilidade Abstract Result of an investment in human and material resources in the field of Geo-Engineering, over nearly three decades, the University of Évora has now a recognition among employers that have accepted students of this institution in their companies. This work intended's to share University of Évora (UE) business context accumulated experiences in Education and Training in Geo-Engineering. The Degree in Geological Engineering from the University of Évora (LEG), as well as two courses in the UE are pioneers in Portugal, to the extent their curricula to possible students internships that can be perform in the workplace under Curricular Units of the 3th Year of the courses. In the case of the LEG, after an intensive period of four to five weeks of training at the University the students who desire it, can have a three weeks internship in a company to elect between the thirty-two that so far agreed to establish protocols with the UE, for this purpose. This process is repeated twice per semester. Alternatively, students who do not wish to attend these stages will have a classical education at the University. In this article, we present the results achieved so far with differentiated teaching. The adaptation to the Bologna model of 1st and 2nd cycles resulted in a lack of training curriculum essential to the full exercise of the Engineer Geologist profession. The specific skills acquired at the end of each cycle were indicated by the Engineers Chamber, however pointed needed training in the 1st Cycle Engineering to recognize the skills to give each graduate in Masters of Engineering. The experience of training in the 2nd cycle in Geological Engineering, where roughly half of the students came outside of the University of Évora, is also analyzed in this work. Keywords: Education, Engineering Geology, Bologna; Skills; Employability