986 resultados para Geographical variation
Resumo:
Offspring size is thought to strongly affect offspring fitness and many studies have shown strong offspring size/fitness relationships in marine and terrestrial organisms. This relationship is strongly mitigated by local environmental conditions and the optimal offspring size that mothers should produce will vary among different environments. It is assumed that offspring size will consistently affect the same traits among populations but this assumption has not been tested. Here I use a common garden experiment to examine the effects of offspring size on subsequent performance for the marine bryozoan Bugula neritina using larvae from two very different populations. The local conditions at one population (Williamstown) favour early reproduction whereas the other population (Pt. Wilson) favours early growth. Despite being placed in the same habitat, the effects of parental larval size were extremely variable and crossed generations. For larvae from Williamstown, parental larval size positively affected initial colony growth and larval size in the next generation. For larvae from the other population, parental larval size positively affected colony fecundity and negatively affected larval size in the next generation. Traditionally, exogenous factors have been viewed as the sole source of variation in offspring size/fitness relationship but these results show that endogenous factors (maternal source population) can also cause variation in this crucial relationship. It appears offspring size effects can be highly variable among populations and organisms can adapt to local conditions without changing the size of their offspring.
Resumo:
Background: Germline mutations in the CDKN2A gene, which encodes two proteins (p16INK4A and p14ARF), are the most common cause of inherited susceptibility to melanoma. We examined the penetrance of such mutations using data from eight groups from Europe, Australia and the United States that are part of The Melanoma Genetics Consortium Methods: We analyzed 80 families with documented CDKN2A mutations and multiple cases of cutaneous melanoma. We modeled penetrance for melanoma using a logistic regression model incorporating survival analysis. Hypothesis testing was based on likelihood ratio tests. Covariates included gender, alterations in p14APF protein, and population melanoma incidence rates. All statistical tests were two-sided. Results: The 80 analyzed families contained 402 melanoma patients, 320 of whom were tested for mutations and 291 were mutation carriers. We also tested 713 unaffected family members for mutations and 194 were carriers. Overall, CDKN2A mutation penetrance was estimated to be 0.30 (95% confidence interval (CI) = 0.12 to 0.62) by age 50 years and 0.67 (95% CI = 0.31 to 0.96) by age 80 years. Penetrance was not statistically significantly modified by gender or by whether the CDKN2A mutation altered p14ARF protein. However, there was a statistically significant effect of residing in a location with a high population incidence rate of melanoma (P = .003). By age 50 years CDKN2A mutation penetrance reached 0.13 in Europe, 0.50 in the United States, and 0.32 in Australia; by age 80 years it was 0.58 in Europe, 0.76 in the United States, and 0.91 in Australia. Conclusions: This study, which gives the most informed estimates of CDKN2A mutation penetrance available, indicates that the penetrance varies with melanoma population incidence rates. Thus, the same factors that affect population incidence of melanoma may also mediate CDKN2A penetrance.
Resumo:
v.51:no.8(1968)
Resumo:
BACKGROUND: Pneumocystis jirovecii dihydropteroate synthase (DHPS) mutations are associated with failure of prophylaxis with sulfa drugs. This retrospective study sought to better understand the geographical variation in the prevalence of these mutations. METHODS: DHPS polymorphisms in 394 clinical specimens from immunosuppressed patients who received a diagnosis of P. jirovecii pneumonia and who were hospitalized in 3 European cities were examined using polymerase chain reaction (PCR) single-strand conformation polymorphism. Demographic and clinical characteristics were obtained from patients' medical charts. RESULTS: Of the 394 patients, 79 (20%) were infected with a P. jirovecii strain harboring one or both of the previously reported DHPS mutations. The prevalence of DHPS mutations was significantly higher in Lyon than in Switzerland (33.0% vs 7.5%; P < .001). The proportion of patients with no evidence of sulfa exposure who harbored a mutant P. jirovecii DHPS genotype was significantly higher in Lyon than in Switzerland (29.7% vs 3.0%; P < .001). During the study period in Lyon, in contrast to the Swiss hospitals, measures to prevent dissemination of P. jirovecii from patients with P. jirovecii pneumonia were generally not implemented, and most patients received suboptimal prophylaxis, the failure of which was strictly associated with mutated P. jirovecii. Thus, nosocomial interhuman transmission of mutated strains directly or indirectly from other individuals in whom selection of mutants occurred may explain the high proportion of mutations without sulfa exposure in Lyon. CONCLUSIONS: Interhuman transmission of P. jirovecii, rather than selection pressure by sulfa prophylaxis, may play a predominant role in the geographical variation in the prevalence in the P. jirovecii DHPS mutations.
Resumo:
The clouded leopard, Neofelis nebulosa, is an endangered semiarboreal felid with a wide distribution in tropical forests of southern and southeast Asia, including the islands of Sumatra and Borneo in the Indonesian archipelago [1]. In common with many larger animal species, it displays morphological variation within its wide geographical range and is currently regarded as comprising of up to four subspecies [2-4]. It is widely recognized that taxonomic designation has a major impact on conservation planning and action [5-8]. Given that the last taxonomic revision was made over 50 years ago [2], a more detailed examination of geographical variation is needed. We describe here the results of a morphometric analysis of the pelages of 57 clouded leopards sampled throughout the species' range. We conclude that there are two distinct morphological groups, which differ primarily in the size of their cloud markings. These results are supported by a recent genetic analysis [9]. On that basis, we give diagnoses for the distinction of two species, one in mainland Asia (N. nebulosa) and the other in Indonesia (N. diardi). The implications for conservation that arise from this new taxonomic arrangement are discussed.
Resumo:
An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., not specifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country’s arsenic distribution by that country’s contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic content versus total arsenic content significantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.
Resumo:
Morphological and genetic data for the Iberian golden- striped salamander, Chioglossa lusitanica, demonstrate the existence of two groups with southern and northern ranges, connected by a zone of intergradation in central Portugal. Because reproductive isolation between them is incomplete we consider the groups to be subspecies. The type locality of C. lusitanica ( Bucaco near Lousa) is situated inside the mixed zone. This necessitates identification of the nominotypical subspecies. We sequenced a fragment of mitochondrial DNA from one of the species' syntypes and we determined what position over a latitudinal transect maximizes the morphological discrimination between the groups. Both approaches indicate that C. lusitanica from Bucaco represents the southern subspecies. A new subspecies of C. lusitanica is described from a northern locality ( Valongo near Porto in northwestern Portugal). A lectotype is designated for Chioglossa lusitanica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We obtained data on time of sexual maturity, dimorphism, fecundity and on the reproductive cycle of Mastigodryas boddaerti (Sentzen, 1796) through the examination of 321 preserved specimens, of which 221 were collected in the Brazilian Amazon region and 100 in the Cerrado savannas of Central Brazil. The degree of sexual size dimorphism (snout-vent length, SVL) was significantly greater in the specimens from the Cerrado in comparison with those from the Amazon. Females had a significantly larger number of ventral scales, on average, whereas males had more sub-caudal scales. However, there was no intersexual difference in tail length or head width, although the heads of the males were significantly longer, which may reflect dietary differences. Breeding females from the Amazon region contained between one and six eggs (N = 12, mean = 3.0), whereas two females from the Cerrado had four to six eggs (N = 10, mean = 5.0). No relationship was found between the SVL of the Amazonian females and the number of eggs or vitellogenic follicles they contained (Cerrado females were not analyzed here due to small sample size). Males are smaller than their female counterpart when they reach sexual maturity. Even though females from the Amazon reproduce throughout the year, females from the Cerrado breed seasonality.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies of intraspecific morphological variation in fishes have traditionally focused on freshwater rather than marine species. In addition, such studies typically focus on adults, although causes and intensities of selective pressures most likely vary through an individual’s lifetime. In this study, body and head shape of a marine species, shiner perch Cymatogaster aggregata Gibbons were compared among localities along the Pacific Northwest coast of North America. Evidence was found for intraspecific variation in ontogenetic allometry, and for a closer correlation of body shape with environment rather than geographical proximity. This correlation with environment was more evident in younger fish, thereby demonstrating the importance of analysing multiple life stages. A common garden experiment suggests both environmental and genetic bases for the observed differences. Recognizing intraspecific ecomorphological complexity and its specificity to habitat and/or life stage can have important consequences for understanding the role of local adaptation and population dynamics in macroecology.
Resumo:
Changes in phenotypic traits, such as mollusc shells, are indicative of variations in selective pressure along environmental gradients. Recently, increased sea surface temperature (SST) and ocean acidification (OA) due to increased levels of carbon dioxide in the seawater have been described as selective agents that may affect the biological processes underlying shell formation in calcifying marine organisms. The benthic snail Concholepas concholepas (Muricidae) is widely distributed along the Chilean coast, and so is naturally exposed to a strong physical-chemical latitudinal gradient. In this study, based on elliptical Fourier analysis, we assess changes in shell morphology (outlines analysis) in juvenile C. concholepas collected at northern (23°S), central (33°S) and southern (39°S) locations off the Chilean coast. Shell morphology of individuals collected in northern and central regions correspond to extreme morphotypes, which is in agreement with both the observed regional differences in the shell apex outlines, the high reclassification success of individuals (discriminant function analysis) collected in these regions, and the scaling relationship in shell weight variability among regions. However, these extreme morphotypes showed similar patterns of mineralization of calcium carbonate forms (calcite and aragonite). Geographical variability in shell shape of C. concholepas described by discriminant functions was partially explained by environmental variables (pCO2, SST). This suggests the influence of corrosive waters, such as upwelling and freshwaters penetrating into the coastal ocean, upon spatial variation in shell morphology. Changes in the proportion of calcium carbonate forms precipitated by C. concholepas across their shells and its susceptibility to corrosive coastal waters are discussed.
Resumo:
Objective: To investigate the geographical variation and clustering of congenital anophthalmia and microphthalmia in England, in response to media reports of clusters.
Resumo:
1. Exchange of carbon dioxide (CO2) from soils can contribute significantly to the global warming potential (GWP) of agro-ecosystems. Due to variations in soil type, climatic onditions and land management practices, exchange of CO2 can differ markedly in different geographical locations. The food industry is developing carbon footprints for their products necessitating integration of CO2 exchange from soils with other CO2 emissions along the food chain. It may be advantageous to grow certain crops in different geographical locations to minimize CO2 emissions from the soil, and this may provide potential to offset other emissions in the food chain, such as transport. 2. Values are derived for the C balance of soils growing horticultural crops in the UK, Spain and Uganda. Net ecosystem production (NEP) is firstly calculated from the difference in net primary production (NPP) and heterotrophic soil respiration (Rh). Both NPP and Rh were estimated from intensive direct field measurements. Secondly, net biome production (NBP) is calculated by subtracting the crop biomass from NEP to give an indication of C balance. The importance of soil exchange is discussed in the light of recent discussions on carbon footprints and within the context of food life-cycle assessment (LCA). 3. The amount of crop relative to the biomass and the Rh prevailing in the different countries were the dominant factors influencing the magnitude of NEP and NBP. The majority of the biomass for lettuce Lactuca sativa and vining peas Pisum sativum, was removed from the field as crop; therefore, NEP and NBP were mainly negative. This was amplified for lettuces grown in Uganda (-16·5 and -17 t C ha-1 year-1 compared to UK and Spain -4·8 to 7·4 and -5·1 to 6·3 t C ha-1 year-1 for NEP and NBP, respectively) where the climate elevated Rh. 4. Synthesis and applications. This study demonstrates the importance of soil emissions in the overall life cycle of vegetables. Variability in such emissions suggests that assigning a single value to food carbon footprints may not be adequate, even within a country. Locations with high heterotrophic soil respiration, such as Spain and Uganda (21·9 and 21·6 t C ha-1 year-1, respectively), could mitigate the negative effects of climate on the C costs of crop production by growth of crops with greater returns of residue to the soil. This would minimize net CO2 emissions from these agricultural ecosystems.
Resumo:
This study aimed to identify potential factors responsible for geographically structured morphological variation within the widespread Australian frogs Limnodynastes tasmaniensis Gunther and L. peronii Dumeril & Bibron. There was support for James's rule, and both latitude and present climate explained large amounts of the variation in body size and shape (particularly in L. peronii). There was also some support for the influence of several biogeographical barriers. Finally, both species were sexually dimorphic for body size and the degree of sexual size dimorphism (SSD) varied geographically. Climate was an important explanation for SSD variation in L. peronii, while latitude was most important for L. tasmaniensis. Geographical variations in sexual selection via male-male physical competition and climate-related resources are suggested as potential explanations for SSD variation in L. peronii. (C) 2004 The Linnean Society of London.