948 resultados para Geographic knowledge discovery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Special issue guest editorial, June, 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Propositionalization, Inductive Logic Programming, Multi-Relational Data Mining

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a process of mining research & development abstract databases to profile current status and to project potential developments for target technologies, The process is called "technology opportunities analysis." This article steps through the process using a sample data set of abstracts from the INSPEC database on the topic o "knowledge discovery and data mining." The paper offers a set of specific indicators suitable for mining such databases to understand innovation prospects. In illustrating the uses of such indicators, it offers some insights into the status of knowledge discovery research*.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation of Kristiina Hormia-Poutanen at the 25th Anniversary Conference of The National Repository Library of Finland, Kuopio 22th of May 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge discovery support environments include beside classical data analysis tools also data mining tools. For supporting both kinds of tools, a unified knowledge representation is needed. We show that concept lattices which are used as knowledge representation in Conceptual Information Systems can also be used for structuring the results of mining association rules. Vice versa, we use ideas of association rules for reducing the complexity of the visualization of Conceptual Information Systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we discuss Conceptual Knowledge Discovery in Databases (CKDD) in its connection with Data Analysis. Our approach is based on Formal Concept Analysis, a mathematical theory which has been developed and proven useful during the last 20 years. Formal Concept Analysis has led to a theory of conceptual information systems which has been applied by using the management system TOSCANA in a wide range of domains. In this paper, we use such an application in database marketing to demonstrate how methods and procedures of CKDD can be applied in Data Analysis. In particular, we show the interplay and integration of data mining and data analysis techniques based on Formal Concept Analysis. The main concern of this paper is to explain how the transition from data to knowledge can be supported by a TOSCANA system. To clarify the transition steps we discuss their correspondence to the five levels of knowledge representation established by R. Brachman and to the steps of empirically grounded theory building proposed by A. Strauss and J. Corbin.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n the past decade, the analysis of data has faced the challenge of dealing with very large and complex datasets and the real-time generation of data. Technologies to store and access these complex and large datasets are in place. However, robust and scalable analysis technologies are needed to extract meaningful information from these datasets. The research field of Information Visualization and Visual Data Analytics addresses this need. Information visualization and data mining are often used complementary to each other. Their common goal is the extraction of meaningful information from complex and possibly large data. However, though data mining focuses on the usage of silicon hardware, visualization techniques also aim to access the powerful image-processing capabilities of the human brain. This article highlights the research on data visualization and visual analytics techniques. Furthermore, we highlight existing visual analytics techniques, systems, and applications including a perspective on the field from the chemical process industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The domain of Knowledge Discovery (KD) and Data Mining (DM) is of growing importance in a time where more and more data is produced and knowledge is one of the most precious assets. Having explored both the existing underlying theory, the results of the ongoing research in academia and the industry practices in the domain of KD and DM, we have found that this is a domain that still lacks some systematization. We also found that this systematization exists to a greater degree in the Software Engineering and Requirements Engineering domains, probably due to being more mature areas. We believe that it is possible to improve and facilitate the participation of enterprise stakeholders in the requirements engineering for KD projects by systematizing requirements engineering process for such projects. This will, in turn, result in more projects that end successfully, that is, with satisfied stakeholders, including in terms of time and budget constraints. With this in mind and based on all information found in the state-of-the art, we propose SysPRE - Systematized Process for Requirements Engineering in KD projects. We begin by proposing an encompassing generic description of the KD process, where the main focus is on the Requirements Engineering activities. This description is then used as a base for the application of the Design and Engineering Methodology for Organizations (DEMO) so that we can specify a formal ontology for this process. The resulting SysPRE ontology can serve as a base that can be used not only to make enterprises become aware of their own KD process and requirements engineering process in the KD projects, but also to improve such processes in reality, namely in terms of success rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported. © 2003 Elsevier Ltd. All rights reserved.