914 resultados para Geographic isolation
Resumo:
Cape Verde is a tropical oceanic ecosystem, highly fragmented and dispersed, with islands physically isolated by distance and depth. To understand how isolation affects the ecological variability in this archipelago, we conducted a research project on the community structure of the 18 commercially most important demersal fishes. An index of ecological distance based on species relative dominance (Di) is developed from Catch Per Unit Effort, derived from an extensive database of artisanal fisheries. Two ecological measures of distance between islands are calculated: at the species level, DDi, and at the community level, DD (sum of DDi). A physical isolation factor (Idb) combining distance (d) and bathymetry (b) is proposed. Covariance analysis shows that isolation factor is positively correlated with both DDi and DD, suggesting that Idb can be considered as an ecological isolation factor. The effect of Idb varies with season and species. This effect is stronger in summer (May to November), than in winter (December to April), which appears to be more unstable. Species react differently to Idb, independently of season. A principal component analysis on the monthly (DDi) for the 12 islands and the 18 species, complemented by an agglomerative hierarchical clustering, shows a geographic pattern of island organization, according to Idb. Results indicate that the ecological structure of demersal fish communities of Cape Verde archipelago, both in time and space, can be explained by a geographic isolation factor. The analytical approach used here is promising and could be tested in other archipelago systems.
Resumo:
A new autosomal recessive genetic condition, the SPOAN syndrome (an acronym for spastic paraplegia, optic atrophy and neuropathy syndrome), was recently discovered in an isolated region of the State of Rio Grande do Norte in Northeast Brazil, in a population that was identified by the IBGE (Brazilian Institute of Geography and Statistics) as belonging to the Brazilian communities with the highest rates of "deficiencies" (Neri, 2003), a term used to describe diseases, malformations, and handicaps in general. This prompted us to conduct a study of consanguinity levels in five of its municipal districts by directly interviewing their inhabitants. Information on 7,639 couples (corresponding to about 40% of the whole population of the studied districts) was obtained. The research disclosed the existence of very high frequencies of consanguineous marriages, which varied from about 9% to 32%, suggesting the presence of a direct association between genetic diseases such as the SPOAN syndrome, genetic drift and inbreeding levels. This fact calls for the introduction of educational programs for the local populations, as well as for further studies aiming to identify and characterize other genetic conditions. Epidemiological strategies developed to collect inbreeding data, with the collaboration of health systems available in the region, might be very successful in the prospecting of genetic disorders.
Resumo:
The specific identity of endosymbiotic dinoflagellates (Symbiodinium spp.) from most zooxanthellate corals is unknown. In a survey of symbiotic cnidarians from the southern Great Barrier Reef (GBR), 23 symbiont types were identified from 86 host species representing 40 genera. A majority (>85%) of these symbionts belong to a single phylogenetic clade or subgenus (C) composed of closely related (as assessed by sequence data from the internal transcribed spacer region and the ribosomal large subunit gene), yet ecologically and physiologically distinct, types. A few prevalent symbiont types, or generalists, dominate the coral community of the southern GBR, whereas many rare and/or specific symbionts, or specialists, are found uniquely within certain host taxa. The comparison of symbiont diversity between southern GBR and Caribbean reefs shows an inverse relationship between coral diversity and symbiont diversity, perhaps as a consequence of more-rapid diversification of Caribbean symbionts. Among clade C types, generalists C1 and C3 are common to both Caribbean and southern GBR symbiont assemblages, whereas the rest are regionally endemic. Possibly because of environmental changes in the Caribbean after geographic isolation through the Quaternary period, a high proportion of Caribbean fauna associate with symbiont taxa from two other distantly related Symbiodinium clades (A and B) that rarely occur in Pacific hosts. The resilience of Porites spp. and the resistance of Montipora digitata to thermal stress and bleaching are partially explained by their association with a thermally tolerant symbiont type, whereas the indiscriminant widespread bleaching and death among certain Pacific corals, during El Nino Southern Oscillation events, are influenced by associations with symbionts possessing higher sensitivity to thermal stress.
Resumo:
Ixodes holocyclus has a narrow, discontinuous distribution along the east coast of Australia. We studied ticks from 17 localities throughout the geographic range of this tick. The ITS2 of I. holocyclus is 793 bp long. We found nucleotide variation at eight of the 588 nucleotide positions (1.4%) that were compared for all ticks. There were eight different nucleotide sequences. Most sequences were not restricted to a particular geographic region. However, sequences F, G and H, which had an adenine at position 197, were found only in the far north of Queensland - all other ticks had a guanine at this position. The low level of intraspecific variation in this tick (0.7%) contrasts with the sequence divergence between L holocyclus and its close relative, I. cornuatus (13.1 %). These data indicate that L holocyclus does not contain cryptic species despite possible geographic isolation of some populations. We conclude that variation in the ITS2 is likely to be informative about the phylogeny of the group.
Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae).
Resumo:
ABSTRACT: BACKGROUND: Genetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness. RESULTS: Here, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages. CONCLUSIONS: Our results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.
Resumo:
Off the coast of Kenya, the Seychelles, home to 87,400 inhabitants mostly of African origin, have largely completed their demographic and epidemiologic transitions. Major investments in infrastructure and social services have fostered steady economic growth. Health care and education are free. The predominance of chronic non-communicable diseases and rapid aging of the population nonetheless present significant challenges for public health and the health system. Like the other small island states in the region, the Seychelles continue to be threatened by arbovirus outbreaks. Health indicators are good, but the geographic isolation, the small and aging population, and limited resources make a major challenge maintaining and sustaining an effective workforce of health professionals, a constantly evolving technical platform, and increasing amount of medications particularly in view of the increasing burden of chronic diseases.
Resumo:
Hybrid speciation was once thought to be rare in animals, but over the past decade, improved molecular analysis techniques and increased research attention have allowed scientists to uncover many examples. In this issue, two papers (Elgvin et al. 2011; Hermansen et al. 2011) present compelling evidence for the hybrid origin of the Italian sparrow based on nuclear and mitochondrial DNA sequences, microsatellites, and plumage coloration. These studies point to an important role for geographic isolation in the process of hybrid speciation, and provide a starting point for closer examination of the genetic and behavioural mechanisms involved.
Resumo:
Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.
Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae).
Resumo:
BackgroundGenetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness.ResultsHere, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages.ConclusionsOur results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.
Resumo:
The loss of large areas of Cerrado (Brazilian savanna) in Brazil can lead to reduced biodiversity and to the extinction of species. Therefore, the present study aimed to investigate the genetic fragility of populations of Copaifera langsdorffii Desf exposed to different anthropic conditions in fragments of Cerrado in the state of São Paulo. The study was carried out in two Experimental Stations operated by the Forest Institute (Assis and Itirapina), in one fully protected conservation unit (Pedregulho) and in one private property (Brotas). Analyses were conducted using leaf samples from 353 adult specimens and eight pairs of microsatellite loci. The number of alleles per locus ranged from 13 to 15 in all populations, but the mean number of effective alleles was approximately half this value (7.2 to 9-1). Observed heterozygosity was significant and lower than the expected in all populations. Consequently, all populations deviated from Hardy-Weinberg expected frequencies. Fixation indexes were significant for all populations, with the Pedregulho population having the lowest value (0.189) and Itirapina having the highest (0.283). The analysis of spatial genetic structure detected family structures at distance classes of 20 to 65 m in the populations studied. No clones were detected in the populations. Estimates of effective population size were low, but the area occupied by each population studied was large enough for conservation, medium and long term. Recent reductions or bottlenecks were detected in all four populations. Mean Gst’ (genetic divergence) indicated that most of the variation was within populations. Cluster structure analysis based on the genotypes detected K= 4 clusters with distinct allele frequencies patterns. The genetic differentiation observed among populations is consistent with the hypothesis of genetic and geographic isolation. Therefore, it is essential to adopt conservation strategies that raise the gene flow between fragments.
Resumo:
A sample of 101 specimens of Ctenomys minutus was collected along its geographic range. Eight karyotypes (2n = 42, 45, 46a, 46b, 47, 48, 49 and 50) were found. The chromosome polymorphisms were due to Robertsonian rearrangements and tandem fusions. The distribution of polymorphisms indicated three population blocks: northern (2n = 49 and 50), central (2n = 46a, 47, and 48) and southern (2n = 42, 45, and 46b). These findings suggest that this species is undergoing a speciation process due to geographic isolation.
Resumo:
It is acknowledged that Canada's criminal justice system has some major flaws, particularly with respect to its application to various ethnic subgroups. Aboriginal Canadians are one subgroup particularly sensitive to the problems in the system as is reflected by their disproportionately high rates of criminality and incarceration. Over the past 50 years many programs have been developed and recommendations have been made to alleviate the tensions Aboriginals find within the system. However, the situation today is essentially the same. Aboriginals are still overrepresented within the system and solutions that have been brought forward have had little success in stemming their flow into the system. Blame for Aboriginal mistreatment in the system has been placed at all levels from line police officers to high-level officials and politicians and attempts to resolve problems continue as an on going process. However, many of the recommendations and reforms have revolved around culture conflict. Although this thesis recognizes the importance of culture conflict in the overrepresentation of Aboriginals within the Canadian criminal justice system, it has also recognized that culture conflict alone is not responsible for all the flaws within the system as it pertains to Aboriginals. This thesis is of the opinion that in order for reforms to the criminal justice system to be successful, the context in which the system is operating must also be considered. Variables such as geographic isolation, economic disparity and social/political stability are viewed as operating in conjunction with culture, ultimately influencing Aboriginal treatment within the system. The conclusions drawn from this study confirm that when these factors operate together, the overrepresentation of Aboriginals within the Canadian criminal justice system is inevitable. Thus all three variables, culture conflict (social/political stability being part), geographic isolation and economic disparity must be address within the system if any significant changes in the crime rates or incarceration rates of Aboriginals is to be expected. In addition, primary research indicated the influence of cooperation as a factor in moderating the effects of criminality; not just cooperation among Aboriginals and non-Aboriginals, but also cooperation among differing Aboriginal communities. It was argued that when all these issues are addressed, Aboriginal peoples in Canada will have the strength to repair their shattered futures.
Resumo:
The present study Molecular genetic characterization of endemic yellow catfish ,generated an important information on the genetic variation and stock structure of the endangered yellow catfish(Horabagrus brachysoma) endemic to the western Ghats. Three genetically discrete stocks of the species have been identified for the first time using allozymes, RAPD(Random Amplified Polymorphic DNA) and microsatelite markers and it is a significant step towards realizing the goal of management of fishery and conservation of the yellow catfish populations in the rivers of the Western Ghats region. In conclusion genetic markers were found to be powerful tools to analyze the population genetic structure of the yellow catfish. Geographic isolation by land distance,inbreading as a result of over-exploitation etc are some reasons for the genetic differenciation between the pairs and deficiency of hetrozygosity revealed by the two co dominant markers, allozyme, and microsatelites.the study emphasizes the need for stock-wise, propagation assisted-rehabilitation of the natural populations yellow catfish
Resumo:
The family Cyprinidae is the largest of freshwater fishes and, with the possible exception of Gobiidae, the largest family of vertebrates.Various members of this family are important as food fish, as aquarium fish, and in biological research. In this study, a fish species from this family exclusively found in the west flowing rivers originating from the Western Ghat region — Gonoproktopterus curmuca — was taken for population genetic analysis.There was an urgent need for restoration ecology by the development of apt management strategies to exploit resources judiciously. One of the strategies thus developed for the scientific management of these resources was to identify the natural units of the fishery resources under exploitation (Altukov, 1981). These natural units of a species can otherwise be called as stocks. A stock can be defined as a panmictic population of related individuals within a single species that is genetically distinct from other such populations.It is believed that a species may undergo micro evolutionary process and differentiate into genetically distinct sub-populations or stocks in course of time, if reproductively and geographically isolated.In recent times, there has been a wide spread degradation of natural aquatic environment due to anthropogenic activities and this has resulted in the decline and even extinction of some fish species. In such situations, evaluation of the genetic diversity of fish resources assumes important to conservation.The species selected for the study, was short-listed as one of the candidates for stock-specific, propagation assisted rehabilitation and management programme in rivers where it is naturally distributed. In connection with this, captive breeding and milt cryopreservation techniques of the species have been developed by the National Bureau of Fish Genetic Resources, Lucknow. However, for a scientific stock-specific rehabilitation programme, information on the stock structure and basic genetic profile of the species are essential and that is not available in case of G. curmuca. So the present work was taken up to identify molecular genetic markers like allozymes, microsatellites and RAPDs and, to use these markers to discriminate the distinct populations of the species, if any, in areas of its natural distribution. The genetic markers were found to be powerful tools to analyze the population genetic structure of the red-tailed barb and demonstrated clear cut genetic differentiation between pairs of populations examined. Geographic isolation by land distance is likely to be the factor that contributed to the restricted gene flow between the river systems. So the present study emphasizes the need for stock-wise, propagation assisted-rehabilitation of the natural populations of red-tailed barb, Gonoprokfopterus curmuca.
Resumo:
Most speciation events probably occur gradually, without complete and immediate reproductive isolation, but the full extent of gene flow between diverging species has rarely been characterized on a genome-wide scale. Documenting the extent and timing of admixture between diverging species can clarify the role of geographic isolation in speciation. Here we use new methodology to quantify admixture at different stages of divergence in Heliconius butterflies, based on whole-genome sequences of 31 individuals. Comparisons between sympatric and allopatric populations of H. melpomene, H. cydno, and H. timareta revealed a genome-wide trend of increased shared variation in sympatry, indicative of pervasive interspecific gene flow. Up to 40% of 100-kb genomic windows clustered by geography rather than by species, demonstrating that a very substantial fraction of the genome has been shared between sympatric species. Analyses of genetic variation shared over different time intervals suggested that admixture between these species has continued since early in speciation. Alleles shared between species during recent time intervals displayed higher levels of linkage disequilibrium than those shared over longer time intervals, suggesting that this admixture took place at multiple points during divergence and is probably ongoing. The signal of admixture was significantly reduced around loci controlling divergent wing patterns, as well as throughout the Z chromosome, consistent with strong selection for Müllerian mimicry and with known Z-linked hybrid incompatibility. Overall these results show that species divergence can occur in the face of persistent and genome-wide admixture over long periods of time.