981 resultados para Geoestatística multivariada
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste documento é mostrar como pode ser obtida a distribuição espacial de precipitação pluvial média anual, através da técnica geoestatística multivariada de cokrigagem usando altitude como variável colocalizada.
Resumo:
In this paper the influence of a secondary variable as a function of the correlation with the primary variable for collocated cokriging is examined. For this study five exhaustive data sets were generated in computer, from which samples with 60 and 104 data points were drawn using the stratified random sampling method. These exhaustive data sets were generated departing from a pair of primary and secondary variables showing a good correlation. Then successive sets were generated by adding an amount of white noise in such a way that the correlation gets poorer. Using these samples, it was possible to find out how primary and secondary information is used to estimate an unsampled location according to the correlation level.
Resumo:
O objetivo deste trabalho foi estudar, mediante a geoestatística e análise multivariada, a variabilidade espacial da produção de milho e feijào e investigar metodologia que permita a estimativa da produção, através da redução de variáveis envolvidas, cultivadas em Latossolo vermelho-escuro, textura argilosa, durante cinco anos consecutivos (1992 - 1996), sob três sistemas de preparo (arado, grade e plantio direto) na Embrapa Arroz e Feijão, em Santo Antonio de Goiás, GO. O método dos componentes principais reduziu consideravelmente a dimensão do problema, facilitando a interpretação. Entretanto, os modelos de regressão linear múltipla baseados nos componentes principais como variáveis regressoras, apresentaram estimativa da produção mais distantes dos valores obtidos quando do uso do modelo baseado nas variáveis originais.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Levofloxacino é uma fluorquinolona sintética de 3 geração. É eficaz contra uma variedade de infecções, incluindo o trato respiratório superior e inferior, trato urinário, obstétrico, ginecológico, e infecções dermatológicas. Com o objetivo de quantificar o levofloxacino em medicamentos e amostras de pacientes saudáveis e ter a resolução de seu espectro, foram realizados estudos preliminares em medicamento utilizando espectrofluorescência molecular com concentrações na faixa de 28,8 108 ng/mL e cromatografia líquida de alta eficiência (HPLC) na faixa de concentração de 2,9 10,8 g/mL; e também quantificação em urina de paciente em tratamento com o medicamento, usando os dois métodos citados. Após isso, foram feitos estudos conclusivos utilizando espectrofluorescência molecular e os métodos univariado e PLS para determinação de levofloxacino na faixa de concentração de 0 250 ng/mL e PARAFAC combinado com o método da adição de padrão, para quantificação de levofloxacino em urina de paciente saudável, na faixa de concentração de 0 150 ng/mL, com diluição da amostra em três níveis (100 x, 500 x e 1000x). O método de ordem zero se mostrou mais eficiente na determinação de levofloxacino em medicamento que o de primeira ordem, seus desvios padrão foram 2,0% e 7,9%, respectivamente. Já o PARAFAC com o método de adição de padrão apresentou melhores resultados com a urina, pois possibilitou a quantificação do antibiótico em uma amostra complexa, de forma mais precisa e exata com o aumento da diluição da urina, sem necessidade de tratamento prévio.
Resumo:
Este trabalho de pesquisa descreve dois estudos de caso de métodos quimiométricos empregados para a quantificação de hidrocarbonetos policíclicos aromáticos HPAs (naftaleno, fluoreno, fenantreno e fluoranteno) em água potável usando espectroscopia de fluorescência molecular e a classificação e caracterização de sucos de uva e seus parâmetros de qualidade através de espectroscopia de infravermelho próximo. O objetivo do primeiro estudo é a aplicação combinada de métodos quimiométricos de segunda ordem (N-PLS, U-PLS, U-PLS/RBL e PARAFAC) e espectrofluorimetria para determinação direta de HPAs em água potável, visando contribuir para o conhecimento do potencial destas metodologias como alternativa viável para a determinação tradicional por cromatografia univariada. O segundo estudo de caso destinado à classificação e determinação de parâmetros de qualidade de sucos de uva, densidade relativa e teor de sólidos solúveis totais, foi medida por espectroscopia de infravermelho próximo e métodos quimiométricos. Diversos métodos quimiométricos, tais como HCA, PLS-DA, SVM-DA e SIMCA foram investigados para a classificação amostras de sucos de uva ao mesmo tempo que métodos de calibração multivariada de primeira ordem, tais como PLS, iPLS e SVM-LS foram usadas para a predição dos parâmetros de qualidade. O princípio orientador para o desenvolvimento dos estudos aqui descritos foi a necessidade de metodologias analíticas com custo, tempo de execução e facilidade de operação melhores e menor produção de resíduos do que os métodos atualmente utilizados para a quantificação de HPAs, em água de torneira, e classificação e caracterização das amostras de suco de uva e seus parâmetros de qualidade
Resumo:
Este trabalho de pesquisa descreve três estudos de utilização de métodos quimiométricos para a classificação e caracterização de óleos comestíveis vegetais e seus parâmetros de qualidade através das técnicas de espectrometria de absorção molecular no infravermelho médio com transformada de Fourier e de espectrometria no infravermelho próximo, e o monitoramento da qualidade e estabilidade oxidativa do iogurte usando espectrometria de fluorescência molecular. O primeiro e segundo estudos visam à classificação e caracterização de parâmetros de qualidade de óleos comestíveis vegetais utilizando espectrometria no infravermelho médio com transformada de Fourier (FT-MIR) e no infravermelho próximo (NIR). O algoritmo de Kennard-Stone foi usado para a seleção do conjunto de validação após análise de componentes principais (PCA). A discriminação entre os óleos de canola, girassol, milho e soja foi investigada usando SVM-DA, SIMCA e PLS-DA. A predição dos parâmetros de qualidade, índice de refração e densidade relativa dos óleos, foi investigada usando os métodos de calibração multivariada dos mínimos quadrados parciais (PLS), iPLS e SVM para os dados de FT-MIR e NIR. Vários tipos de pré-processamentos, primeira derivada, correção do sinal multiplicativo (MSC), dados centrados na média, correção do sinal ortogonal (OSC) e variação normal padrão (SNV) foram utilizados, usando a raiz quadrada do erro médio quadrático de validação cruzada (RMSECV) e de predição (RMSEP) como parâmetros de avaliação. A metodologia desenvolvida para determinação de índice de refração e densidade relativa e classificação dos óleos vegetais é rápida e direta. O terceiro estudo visa à avaliação da estabilidade oxidativa e qualidade do iogurte armazenado a 4C submetido à luz direta e mantido no escuro, usando a análise dos fatores paralelos (PARAFAC) na luminescência exibida por três fluoróforos presentes no iogurte, onde pelo menos um deles está fortemente relacionado com as condições de armazenamento. O sinal fluorescente foi identificado pelo espectro de emissão e excitação das substâncias fluorescentes puras, que foram sugeridas serem vitamina A, triptofano e riboflavina. Modelos de regressão baseados nos escores do PARAFAC para a riboflavina foram desenvolvidos usando os escores obtidos no primeiro dia como variável dependente e os escores obtidos durante o armazenamento como variável independente. Foi visível o decaimento da curva analítica com o decurso do tempo da experimentação. Portanto, o teor de riboflavina pode ser considerado um bom indicador para a estabilidade do iogurte. Assim, é possível concluir que a espectroscopia de fluorescência combinada com métodos quimiométricos é um método rápido para monitorar a estabilidade oxidativa e a qualidade do iogurte
Resumo:
O biodiesel tem sido amplamente utilizado como uma fonte de energia renovável, que contribui para a diminuição de demanda por diesel mineral. Portanto, existem várias propriedades que devem ser monitoradas, a fim de produzir e distribuir biodiesel com a qualidade exigida. Neste trabalho, as propriedades físicas do biodiesel, tais como massa específica, índice de refração e ponto de entupimento de filtro a frio foram medidas e associadas a espectrometria no infravermelho próximo (NIR) e espectrometria no infravermelho médio (Mid-IR) utilizando ferramentas quimiométricas. Os métodos de regressão por mínimos quadrados parciais (PLS), regressão de mínimos quadrados parciais por intervalos (iPLS), e regressão por máquinas de vetor de suporte (SVM) com seleção de variáveis por Algoritmo Genético (GA) foram utilizadas para modelar as propriedades mencionadas. As amostras de biodiesel foram sintetizadas a partir de diferentes fontes, tais como canola, girassol, milho e soja. Amostras adicionais de biodiesel foram adquiridas de um fornecedor da região sul do Brasil. Em primeiro lugar, o pré-processamento de correção de linha de base foi usado para normalizar os dados espectrais de NIR, seguidos de outros tipos de pré-processamentos que foram aplicados, tais como centralização dos dados na média, 1 derivada e variação de padrão normal. O melhor resultado para a previsão do ponto de entupimento de filtro a frio foi utilizando os espectros de Mid-IR e o método de regressão GA-SVM, com alto coeficiente de determinação da previsão, R2Pred=0,96 e baixo valor da Raiz Quadrada do Erro Médio Quadrático da previsão, RMSEP (C)= 0,6. Para o modelo de previsão da massa específica, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com R2Pred=0,98 e RMSEP (g/cm3)= 0,0002. Quanto ao modelo de previsão para o índice de refração, o melhor resultado foi obtido utilizando os espectros de Mid-IR e regressão por PLS, com excelente R2Pred=0,98 e RMSEP= 0,0001. Para esses conjuntos de dados, o PLS e o SVM demonstraram sua robustez, apresentando-se como ferramentas úteis para a previsão das propriedades do biodiesel estudadas
Resumo:
Com cada vez mais intenso desenvolvimento urbano e industrial, atualmente um desafio fundamental é eliminar ou reduzir o impacto causado pelas emissões de poluentes para a atmosfera. No ano de 2012, o Rio de Janeiro sediou a Rio +20, a Conferência das Nações Unidas sobre Desenvolvimento Sustentável, onde representantes de todo o mundo participaram. Na época, entre outros assuntos foram discutidos a economia verde e o desenvolvimento sustentável. O O3 troposférico apresenta-se como uma variável extremamente importante devido ao seu forte impacto ambiental, e conhecer o comportamento dos parâmetros que afetam a qualidade do ar de uma região, é útil para prever cenários. A química das ciências atmosféricas e meteorologia são altamente não lineares e, assim, as previsões de parâmetros de qualidade do ar são difíceis de serem determinadas. A qualidade do ar depende de emissões, de meteorologia e topografia. Os dados observados foram o dióxido de nitrogênio (NO2), monóxido de nitrogênio (NO), óxidos de nitrogênio (NOx), monóxido de carbono (CO), ozônio (O3), velocidade escalar vento (VEV), radiação solar global (RSG), temperatura (TEM), umidade relativa (UR) e foram coletados através da estação móvel de monitoramento da Secretaria do Meio Ambiente (SMAC) do Rio de Janeiro em dois locais na área metropolitana, na Pontifícia Universidade Católica (PUC-Rio) e na Universidade do Estado do Rio de Janeiro (UERJ) no ano de 2011 e 2012. Este estudo teve três objetivos: (1) analisar o comportamento das variáveis, utilizando o método de análise de componentes principais (PCA) de análise exploratória, (2) propor previsões de níveis de O3 a partir de poluentes primários e de fatores meteorológicos, comparando a eficácia dos métodos não lineares, como as redes neurais artificiais (ANN) e regressão por máquina de vetor de suporte (SVM-R), a partir de poluentes primários e de fatores meteorológicos e, finalmente, (3) realizar método de classificação de dados usando a classificação por máquina de vetor suporte (SVM-C). A técnica PCA mostrou que, para conjunto de dados da PUC as variáveis NO, NOx e VEV obtiveram um impacto maior sobre a concentração de O3 e o conjunto de dados da UERJ teve a TEM e a RSG como as variáveis mais importantes. Os resultados das técnicas de regressão não linear ANN e SVM obtidos foram muito próximos e aceitáveis para o conjunto de dados da UERJ apresentando coeficiente de determinação (R2) para a validação, 0,9122 e 0,9152 e Raiz Quadrada do Erro Médio Quadrático (RMECV) 7,66 e 7,85, respectivamente. Quanto aos conjuntos de dados PUC e PUC+UERJ, ambas as técnicas, obtiveram resultados menos satisfatórios. Para estes conjuntos de dados, a SVM mostrou resultados ligeiramente superiores, e PCA, SVM e ANN demonstraram sua robustez apresentando-se como ferramentas úteis para a compreensão, classificação e previsão de cenários da qualidade do ar
Resumo:
O objetivo deste trabalho foi estabelecer um modelo empregando-se ferramentas de regressão multivariada para a previsão do teor em ésteres metílicos e, simultaneamente, de propriedades físico-químicas de misturas de óleo de soja e biodiesel de soja. O modelo foi proposto a partir da correlação das propriedades de interesse com os espectros de reflectância total atenuada no infravermelho médio das misturas. Para a determinação dos teores de ésteres metílicos foi utilizada a cromatografia líquida de alta eficiência (HPLC), podendo esta ser uma técnica alternativa aos método de referência que utilizam a cromatografia em fase gasosa (EN 14103 e EN 14105). As propriedades físico-químicas selecionadas foram índice de refração, massa específica e viscosidade. Para o estudo, foram preparadas 11 misturas com diferentes proporções de biodiesel de soja e de óleo de soja (0-100 % em massa de biodiesel de soja), em quintuplicata, totalizando 55 amostras. A região do infravermelho estudada foi a faixa de 3801 a 650 cm-1. Os espectros foram submetidos aos pré-tratamentos de correção de sinal multiplicativo (MSC) e, em seguida, à centralização na média (MC). As propriedades de interesse foram submetidas ao autoescalamento. Em seguida foi aplicada análise de componentes principais (PCA) com a finalidade de reduzir a dimensionalidade dos dados e detectar a presença de valores anômalos. Quando estes foram detectados, a amostra era descartada. Os dados originais foram submetidos ao algoritmo de Kennard-Stone dividindo-os em um conjunto de calibração, para a construção do modelo, e um conjunto de validação, para verificar a sua confiabilidade. Os resultados mostraram que o modelo proposto por PLS2 (Mínimos Quadrados Parciais) foi capaz de se ajustar bem os dados de índice de refração e de massa específica, podendo ser observado um comportamento aleatório dos erros, indicando a presença de homocedasticidade nos valores residuais, em outras palavras, o modelo construído apresentou uma capacidade de previsão para as propriedades de massa específica e índice de refração com 95% de confiança. A exatidão do modelo foi também avaliada através da estimativa dos parâmetros de regressão que são a inclinação e o intercepto pela Região Conjunta da Elipse de Confiança (EJCR). Os resultados confirmaram que o modelo MIR-PLS desenvolvido foi capaz de prever, simultaneamente, as propriedades índice de refração e massa específica. Para os teores de éteres metílicos determinados por HPLC, foi também desenvolvido um modelo MIR-PLS para correlacionar estes valores com os espectros de MIR, porém a qualidade do ajuste não foi tão boa. Apesar disso, foi possível mostrar que os dados podem ser modelados e correlacionados com os espectros de infravermelho utilizando calibração multivariada