1000 resultados para Geochemistry of major elements


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous studies use major element concentrations measured on continental margin sediments to reconstruct terrestrial climate variations. The choice and interpretation of climate proxies however differ from site to site. Here we map the concentrations of major elements (Ca, Fe, Al, Si, Ti, K) in Atlantic surface sediments (36 degrees N-49 degrees S) to assess the factors influencing the geochemistry of Atlantic hemipelagic sediments and the potential of elemental ratios to reconstruct different terrestrial climate regimes. High concentrations of terrigenous elements and low Ca concentrations along the African and South American margins reflect the dominance of terrigenous input in these regions. Single element concentrations and elemental ratios including Ca (e. g., Fe/Ca) are too sensitive to dilution effects (enhanced biological productivity, carbonate dissolution) to allow reliable reconstructions of terrestrial climate. Other elemental ratios reflect the composition of terrigenous material and mirror the climatic conditions within the continental catchment areas. The Atlantic distribution of Ti/Al supports its use as a proxy for eolian versus fluvial input in regions of dust deposition that are not affected by the input of mafic rock material. The spatial distributions of Al/Si and Fe/K reflect the relative input of intensively weathered material from humid regions versus slightly weathered particles from drier areas. High biogenic opal input however influences the Al/Si ratio. Fe/K is sensitive to the input of mafic material and the topography of Andean river drainage basins. Both ratios are suitable to reconstruct African and South American climatic zones characterized by different intensities of chemical weathering in well-understood environmental settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrographic and geochemical analyses of basaltic rocks dredged from the first segment of the Southwest Indian Ridge near the Rodriguez Triple Junction have been completed in order to investigate water-rock interaction processes during mid-ocean ridge (MOR) hydrothermal alteration in the Indian Ocean. In the study area, we have successfully recovered a serial section of upper oceanic crust exposed along a steep rift valley wall which was uplifted and emplaced along a low angle normal fault. On the basis of microscopic observation, dredged samples are classified into three types: fresh lavas, low-temperature altered rocks, and high-temperature altered rocks. The fresh lavas have essentially the same chemical composition as typical N-MORB, although LILE and Nb are slightly enriched and depleted, respectively. Low temperature alteration brought about the enrichment of K2O, Rb, and U due to the presence of K-rich celadonite and U-adsorption onto Fe-oxyhydroxide and clay minerals. On the other hand, chloritization, albitization, and addition of base metals by high temperature hydrothermal alteration result in enrichments of MnO, MgO, Na2O, Cu, and Zn and depletions of CaO, K2O, Cr, Co, Ni, Rb, Sr, and Ba. In addition, U-enrichment is also observable in the high temperature altered rocks probably due to the decrease of uranite solubility in the reducing high-temperature hydrothermal solution. These petrological and geochemical features are comparable to those of the volcanic zone to transition zone rocks in the DSDP/ODP Hole 504B, indicating that our samples were recovered from the upper ~1000 m section of the oceanic crust. Only the alteration minerals related to off-axis alteration are absent in our samples dredged from near the spreading axis. The similarity of alteration between our samples from the Indian Ocean and the Hole 504B rocks from the Pacific Ocean suggests that MOR hydrothermal systems are probably similar across all world oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study enfolds the environment of deposition and the lateral variation in texture, mineralogy and geochemistry of the Ashtamudy lake sediments. While the heavy mineral and clay mineral investigations enable us to decipher the nature, texture and source of sediments; organic matter and carbonate contents and the geochemical analysis of major and minor elements help establish the distribution and concentration of the same in regard to the various physico-chemical processes operating in the lake. Study of trace elements holds prime importance in this work, since their concentrations can be used to outline the extent of contaminated bottom area, as well as the source and dispersal paths of discharged_pollutants. In short, this study brings out a vivid picture of the mineralogy and geochemistry of the lake sediments in different environments, viz., the freshwater, brackish water and marine environments that are confined to the eastern, central and western parts of the lake respectively. For the better understanding and expression of the results of the analysis, the lake has been divided into 3 zones namely: eastern part, central part and western part.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of particles recycling on the geochemistry of sediments in a large tropical dam lake in the Amazonian region, Brazil. Article in Journal of South American Earth Sciences 72 · December 2016 DOI: 10.1016/j.jsames.2016.09.012 1st Rita Fonseca 16.85 · Universidade de Évora 2nd Catarina Pinho 3rd Manuela Oliveira 22.6 · Universidade de Évora Abstract As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).