883 resultados para Genotyping by sequencing
Resumo:
This study examines the potential of next-generation sequencing based ‘genotyping-by-sequencing’ (GBS) of microsatellite loci for rapid and cost-effective genotyping in large-scale population genetic studies. The recovery of individual genotypes from large sequence pools was achieved by PCR-incorporated combinatorial barcoding using universal primers. Three experimental conditions were employed to explore the possibility of using this approach with existing and novel multiplex marker panels and weighted amplicon mixture. The GBS approach was validated against microsatellite data generated by capillary electrophoresis. GBS allows access to the underlying nucleotide sequences that can reveal homoplasy, even in large datasets and facilitates cross laboratory transfer. GBS of microsatellites, using individual combinatorial barcoding, is potentially faster and cheaper than current microsatellite approaches and offers better and more data.
Resumo:
Sets of RNA ladders can be synthesized by transcription of a bacteriophage-encoded RNA polymerase using 3′-deoxynucleotides as chain terminators. These ladders can be used for sequencing of DNA. Using a nicked form of phage SP6 RNA polymerase in this study substantially enhanced yields of transcriptional sequencing ladders. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of chain-terminated RNA ladders allowed DNA sequence determination of up to 56 nt. It is also demonstrated that A→G and C→T variations in heterozygous and homozygous samples can be unambiguously identified by the mass spectrometric analysis. As a step towards single-tube sequencing reactions, α-thiotriphosphate nucleotide analogs were used to overcome problems caused by chain terminator-independent, premature termination and by the small mass difference between natural pyrimidine nucleotides.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP. flaAHRManalysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
The highly variable flagellin-encoding flaA gene has long been used for genotyping Campylobacter jejuni and Campylobacter coli. High-resolution melting (HRM) analysis is emerging as an efficient and robust method for discriminating DNA sequence variants. The objective of this study was to apply HRM analysis to flaA-based genotyping. The initial aim was to identify a suitable flaA fragment. It was found that the PCR primers commonly used to amplify the flaA short variable repeat (SVR) yielded a mixed PCR product unsuitable for HRM analysis. However, a PCR primer set composed of the upstream primer used to amplify the fragment used for flaA restriction fragment length polymorphism (RFLP) analysis and the downstream primer used for flaA SVR amplification generated a very pure PCR product, and this primer set was used for the remainder of the study. Eighty-seven C. jejuni and 15 C. coli isolates were analyzed by flaA HRM and also partial flaA sequencing. There were 47 flaA sequence variants, and all were resolved by HRM analysis. The isolates used had previously also been genotyped using single-nucleotide polymorphisms (SNPs), binary markers, CRISPR HRM, and flaA RFLP.flaA HRM analysis provided resolving power multiplicative to the SNPs, binary markers, and CRISPR HRM and largely concordant with the flaA RFLP. It was concluded that HRM analysis is a promising approach to genotyping based on highly variable genes.
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.
Resumo:
La butirilcolinesterasa humana (BChE; EC 3.1.1.8) es una enzima polimórfica sintetizada en el hígado y en el tejido adiposo, ampliamente distribuida en el organismo y encargada de hidrolizar algunos ésteres de colina como la procaína, ésteres alifáticos como el ácido acetilsalicílico, fármacos como la metilprednisolona, el mivacurium y la succinilcolina y drogas de uso y/o abuso como la heroína y la cocaína. Es codificada por el gen BCHE (OMIM 177400), habiéndose identificado más de 100 variantes, algunas no estudiadas plenamente, además de la forma más frecuente, llamada usual o silvestre. Diferentes polimorfismos del gen BCHE se han relacionado con la síntesis de enzimas con niveles variados de actividad catalítica. Las bases moleculares de algunas de esas variantes genéticas han sido reportadas, entre las que se encuentra las variantes Atípica (A), fluoruro-resistente del tipo 1 y 2 (F-1 y F-2), silente (S), Kalow (K), James (J) y Hammersmith (H). En este estudio, en un grupo de pacientes se aplicó el instrumento validado Lifetime Severity Index for Cocaine Use Disorder (LSI-C) para evaluar la gravedad del consumo de “cocaína” a lo largo de la vida. Además, se determinaron Polimorfismos de Nucleótido Simple (SNPs) en el gen BCHE conocidos como responsables de reacciones adversas en pacientes consumidores de “cocaína” mediante secuenciación del gen y se predijo el efecto delos SNPs sobre la función y la estructura de la proteína, mediante el uso de herramientas bio-informáticas. El instrumento LSI-C ofreció resultados en cuatro dimensiones: consumo a lo largo de la vida, consumo reciente, dependencia psicológica e intento de abandono del consumo. Los estudios de análisis molecular permitieron observar dos SNPs codificantes (cSNPs) no sinónimos en el 27.3% de la muestra, c.293A>G (p.Asp98Gly) y c.1699G>A (p.Ala567Thr), localizados en los exones 2 y 4, que corresponden, desde el punto de vista funcional, a la variante Atípica (A) [dbSNP: rs1799807] y a la variante Kalow (K) [dbSNP: rs1803274] de la enzima BChE, respectivamente. Los estudios de predicción In silico establecieron para el SNP p.Asp98Gly un carácter patogénico, mientras que para el SNP p.Ala567Thr, mostraron un comportamiento neutro. El análisis de los resultados permite proponer la existencia de una relación entre polimorfismos o variantes genéticas responsables de una baja actividad catalítica y/o baja concentración plasmática de la enzima BChE y algunas de las reacciones adversas ocurridas en pacientes consumidores de cocaína.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This thesis is settled within the STOCKMAPPING project, which represents one of the studies that were developed in the framework of RITMARE Flagship project. The main goals of STOCKMAPPING were the creation of a genomic mapping for stocks of demersal target species and the assembling of a database of population genomic, in order to identify stocks and stocks boundaries. The thesis focuses on three main objectives representing the core for the initial assessment of the methodologies and structure that would be applied to the entire STOCKMAPPING project: individuation of an analytical design to identify and locate stocks and stocks boundaries of Mullus barbatus, application of a multidisciplinary approach to validate biological methods and an initial assessment and improvement for the genotyping by sequencing technique utilized (2b-RAD). The first step is the individuation of an analytical design that has to take in to account the biological characteristics of red mullet and being representative for STOCKMAPPING commitments. In this framework a reduction and selection steps was needed due to budget reduction. Sampling areas were ranked according the individuation of four priorities. To guarantee a multidisciplinary approach the biological data associated to the collected samples were used to investigate differences between sampling areas and GSAs. Genomic techniques were applied to red mullet for the first time so an initial assessment of molecular protocols for DNA extraction and 2b-RAD processing were needed. At the end 192 good quality DNAs have been extracted and eight samples have been processed with 2b-RAD. Utilizing the software Stacks for sequences analyses a great number of SNPs markers among the eight samples have been identified. Several tests have been performed changing the main parameter of the Stacks pipeline in order to identify the most explicative and functional sets of parameters.
Resumo:
As a large and long-lived species with high economic value, restricted spawning areas and short spawning periods, the Atlantic bluefin tuna (BFT; Thunnus thynnus) is particularly susceptible to over-exploitation. Although BFT have been targeted by fisheries in the Mediterranean Sea for thousands of years, it has only been in these last decades that the exploitation rate has reached far beyond sustainable levels. An understanding of the population structure, spatial dynamics, exploitation rates and the environmental variables that affect BFT is crucial for the conservation of the species. The aims of this PhD project were 1) to assess the accuracy of larval identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating the temporal stability of population structuring in the Mediterranean Sea. Several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials are reviewed. Barcoding of scombrid larvae revealed important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. Using a Genotyping-by-Sequencing a panel of 95 SNPs was developed and used to characterize the population structuring of BFT and composition of adult feeding aggregations. Using novel molecular techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age, ancient roman settlements Byzantine-era Constantinople and a 20th century collection. A second panel of 96 SNPs was developed to genotype historical and modern samples in order to elucidate changes in population structuring and allele frequencies of loci associated with selective traits.
Resumo:
Range expansions are extremely common, but have only recently begun to attract attention in terms of their genetic consequences. As populations expand, demes at the wave front experience strong genetic drift, which is expected to reduce genetic diversity and potentially cause ‘allele surfing’, where alleles may become fixed over a wide geographical area even if their effects are deleterious. Previous simulation models show that range expansions can generate very strong selective gradients on dispersal, reproduction, competition and immunity. To investigate the effects of range expansion on genetic diversity and adaptation, we studied the population genomics of the bank vole (Myodes glareolus) in Ireland. The bank vole was likely introduced in the late 1920s and is expanding its range at a rate of ~2.5 km/year. Using genotyping-by-sequencing, we genotyped 281 bank voles at 5979 SNP loci. Fourteen sample sites were arranged in three transects running from the introduction site to the wave front of the expansion. We found significant declines in genetic diversity along all three transects. However, there was no evidence that sites at the wave front had accumulated more deleterious mutations. We looked for outlier loci with strong correlations between allele frequency and distance from the introduction site, where the direction of correlation was the same in all three transects. Amongst these outliers, we found significant enrichment for genic SNPs, suggesting the action of selection. Candidates for selection included several genes with immunological functions and several genes that could influence behaviour.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background Human papillomavirus (HPV) is the aetiological agent for cervical cancer and genital warts. Concurrent HPV and HIV infection in the South African population is high. HIV positive (+) women are often infected with multiple, rare and undetermined HPV types. Data on HPV incidence and genotype distribution are based on commercial HPV detection kits, but these kits may not detect all HPV types in HIV + women. The objectives of this study were to (i) identify the HPV types not detected by commercial genotyping kits present in a cervical specimen from an HIV positive South African woman using next generation sequencing, and (ii) determine if these types were prevalent in a cohort of HIV-infected South African women. Methods Total DNA was isolated from 109 cervical specimens from South African HIV + women. A specimen within this cohort representing a complex multiple HPV infection, with 12 HPV genotypes detected by the Roche Linear Array HPV genotyping (LA) kit, was selected for next generation sequencing analysis. All HPV types present in this cervical specimen were identified by Illumina sequencing of the extracted DNA following rolling circle amplification. The prevalence of the HPV types identified by sequencing, but not included in the Roche LA, was then determined in the 109 HIV positive South African women by type-specific PCR. Results Illumina sequencing identified a total of 16 HPV genotypes in the selected specimen, with four genotypes (HPV-30, 74, 86 and 90) not included in the commercial kit. The prevalence's of HPV-30, 74, 86 and 90 in 109 HIV positive South African women were found to be 14.6 %, 12.8 %, 4.6 % and 8.3 % respectively. Conclusions Our results indicate that there are HPV types, with substantial prevalence, in HIV positive women not being detected in molecular epidemiology studies using commercial kits. The significance of these types in relation to cervical disease remains to be investigated.
Resumo:
Objective: To investigate the association of complement C4 null genes (C4QO, including C4AQO and C4BQO) and C2 gene with systemic lupus erythematosus (SLE) in southwest Han Chinese; 136 patients with SLE and 174 matched controls were genotyped. Methods: C4 null genes were determined by a polymerase chain reaction (PCR) procedure with sequence specific primers (PCR-SSP). The 2 bp insertion in exon 29, which was previously identified in non-Chinese populations and caused defective C4A genes, was directly typed by sequencing the whole exon 29 using exon specific primers. The exon 6 of complement C2 was also sequenced in both the patients and controls. Results: The frequency of homozygous C4AQO allele was 12.5% (17/136) in patients with SLE compared with 1.1% (2/174) in controls (p<0.001, odds ratio (OR)=12.286, 95% confidence interval (95% CI) 2.786 to 54.170). There was no significant difference for homozygous C4BQO allele between patients with SLE and controls (p=0.699). Patients with the C4AQO gene had an increased risk of acquiring renal disorder, serositis, and anti-dsDNA antibodies compared with those without C4AQO (for renal disorder, p=0.018, OR=8.951, 95% Cl 1.132 to 70.804; for serositis, p=0.011, OR 4.891, 95% CI 1.574 to 15.198; for anti-dsDNA, p=0.004, OR 7.630, 95%Cl 1.636 to 35.584). None of the patients or controls had the 2 bp insertion in exon 29 of the C4 gene. The type I C2 deficiency was not detected in the 3 10 samples. Conclusion: It is suggested that deficiency of C4A (not due to a 2 bp insertion in exon 29), but not C4B or C2, may be a risk factor for acquiring SLE in south west Han Chinese; this results in increased risk of renal disorder, serositis, and anti-dsDNA antibodies in patients with SLE. Racial differences seem to be relevant in susceptibility to SLE.
Resumo:
Abstract Background Leishmania (Leishmania) amazonensis infection in man results in a clinical spectrum of disease manifestations ranging from cutaneous to mucosal or visceral involvement. In the present study, we have investigated the genetic variability of 18 L. amazonensis strains isolated in northeastern Brazil from patients with different clinical manifestations of leishmaniasis. Parasite DNA was analyzed by sequencing of the ITS flanking the 5.8 S subunit of the ribosomal RNA genes, by RAPD and SSR-PCR and by PFGE followed by hybridization with gene-specific probes. Results ITS sequencing and PCR-based methods revealed genetic heterogeneity among the L. amazonensis isolates examined and molecular karyotyping also showed variation in the chromosome size of different isolates. Unrooted genetic trees separated strains into different groups. Conclusion These results indicate that L. amazonensis strains isolated from leishmaniasis patients from northeastern Brazil are genetically diverse, however, no correlation between genetic polymorphism and phenotype were found.
Resumo:
An approach to analyzing single-nucleotide polymorphisms (SNPs) found in the human genome has been developed that couples a recently developed invasive cleavage assay for nucleic acids with detection by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The invasive cleavage assay is a signal amplification method that enables the analysis of SNPs by MALDI-TOF MS directly from human genomic DNA without the need for initial target amplification by PCR. The results presented here show the successful genotyping by this approach of twelve SNPs located randomly throughout the human genome. Conventional Sanger sequencing of these SNP positions confirmed the accuracy of the MALDI-TOF MS analysis results. The ability to unambiguously detect both homozygous and heterozygous genotypes is clearly demonstrated. The elimination of the need for target amplification by PCR, combined with the inherently rapid and accurate nature of detection by MALDI-TOF MS, gives this approach unique and significant advantages in the high-throughput genotyping of large numbers of SNPs, useful for locating, identifying, and characterizing the function of specific genes.