961 resultados para Genome-wide linkage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10-15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients.¦METHODOLOGY/PRINCIPAL FINDINGS: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LOD(max) of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations.¦CONCLUSIONS/SIGNIFICANCE: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome-wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome-wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single-nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10(-7)). These two SNPs were in high linkage disequilibrium (r(2) = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 x 10(-5)) was to an SNP within CDH13, whose protein product is a newly identified receptor for high-molecular-weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. Methodology/Principal Findings: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. Conclusions/Significance: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein E (ApoE) plays a major role in the metabolism of high density and low density lipoproteins (HDL and LDL). Its common protein isoforms (E2, E3, E4) are risk factors for coronary artery disease (CAD) and explain between 16 to 23% of the inter-individual variation in plasma apoE levels. Linkage analysis has been completed for plasma apoE levels in the GENOA study (Genetic Epidemiology Network of Atherosclerosis). After stratification of the population by lipoprotein levels and body mass index (BMI) to create more homogeneity with regard to biological context for apoE levels, Hispanic families showed significant linkage on chromosome 17q for two strata (LOD=2.93 at 104 cM for a low cholesterol group, LOD=3.04 at 111 cM for a low cholesterol, high HDLC group). Replication of 17q linkage was observed for apoB and apoE levels in the unstratified Hispanic and African-American populations, and for apoE levels in African-American families. Replication of this 17q linkage in different populations and strata provides strong support for the presence of gene(s) in this region with significant roles in the determination of inter-individual variation in plasma apoE levels. Through a positional and functional candidate gene approach, ten genes were identified in the 17q linked region, and 62 polymorphisms in these genes were genotyped in the GENOA families. Association analysis was performed with FBAT, GEE, and variance-component based tests followed by conditional linkage analysis. Association studies with partial coverage of TagSNPs in the gene coding for apolipoprotein H (APOH) were performed, and significant results were found for 2 SNPs (APOH_20951 and APOH_05407) in the Hispanic low cholesterol strata accounting for 3.49% of the inter-individual variation in plasma apoE levels. Among the other candidate genes, we identified a haplotype block in the ACE1 gene that contains two major haplotypes associated with apoE levels as well as total cholesterol, apoB and LDLC levels in the unstratified Hispanic population. Identifying genes responsible for the remaining 60% of inter-individual variation in plasma apoE level, will yield new insights into the understanding of genetic interactions involved in the lipid metabolism, and a more precise understanding of the risk factors leading to CAD. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA), the most common autoimmune disease, is associated in families with other autoimmune diseases, including insulin-dependent diabetes mellitus (IDDM). Its genetic component has been suggested by familial aggregation (λs = 5), twin studies, and segregation analysis. HLA, which is the only susceptibility locus known, has been estimated to account for one-third of this component. The aim of this paper was to identify new RA loci. A genome scan was performed with 114 European Caucasian RA sib pairs from 97 nuclear families. Linkage was significant only for HLA (P < 2.5⋅10−5) and nominal for 19 markers in 14 other regions (P < 0.05). Four of the loci implicated in IDDM potentially overlap with these regions: the putative IDDM6, IDDM9, IDDM13, and DXS998 loci. The first two of these candidate regions, defined in the RA genome scan by the markers D18S68-D18S61-D18S469 (18q22–23) and D3S1267 (3q13), respectively, were studied in 194 additional RA sib pairs from 164 nuclear families. Support for linkage to chromosome 3 only was extended significantly (P = 0.002). The analysis of all 261 families provided a linkage evidence of P = 0.001 and suggested an interaction between this putative RA locus and HLA. This locus could account for 16% of the genetic component of RA. Candidate genes include those coding for CD80 and CD86, molecules involved in antigen-specific T cell recognition. In conclusion, this first genome scan in RA Caucasian families revealed 14 candidate regions, one of which was supported further by the study of a second set of families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plasma triglyceride concentration is known to be a significant risk factor for cardiovascular disease (CVD). Previous studies have found that the level of triglycerides is strongly influenced by genetic factors. Methods: To identify quantitative trait loci influencing triglycerides, we conducted a genome-wide linkage scan on data from 485 Australian adult dizygotic twin pairs. Prior to linkage analysis, triglyceride values were adjusted for the effects of covariates including age, sex, time since last meal, time of blood collection (CT) and time to plasma separation. Results: The heritability estimate for ln(triglyceride) adjusted for all above fixed effects was 0.49. The highest multipoint LOD score observed was 2.94 (genome-wide p=0.049) on chromosome 7 (at 65cM). This 7p region contains several candidate genes. Two other regions with suggestive multipoint LOD scores were also identified on chromosome 4 (LOD score=2.26 at 62cM) and chromosome X (LOD score=2.01 at 81cM). Conclusions: The linkage peaks found represent newly identified regions for more detailed study, in particular the significant linkage observed on chromosome 7p13. \ (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to find loci for major depression via linkage analysis of a large sibling pair sample. Method: The authors conducted a genome-wide linkage analysis of 839 families consisting of 971 affected sibling pairs with severe recurrent major depression, comprising waves I and II of the Depression Network Study cohort. In addition to examining affected status, linkage analyses in the full data set were performed using diagnoses restricted by impairment severity, and association mapping of hits in a large case-control data set was attempted. Results: The authors identified genome-wide significant linkage to chromosome 3p25-26 when the diagnoses were restricted by severity, which was a maximum LOD score of 4.0 centered at the linkage marker D3S1515. The linkage signal identified was genome-wide significant after correction for the multiple phenotypes tested, although subsequent association mapping of the region in a genome-wide association study of a U.K. depression sample did not provide significant results. Conclusions: The authors report a genome-wide significant locus for depression that implicates genes that are highly plausible for involvement in the etiology of recurrent depression. Despite the fact that association mapping in the region was negative, the linkage finding was replicated by another group who found genome-wide-significant linkage for depression in the same region. This suggests that 3p25-26 is a new locus for severe recurrent depression. This represents the first report of a genome-wide significant locus for depression that also has an independent genome-wide significant replication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A genome-wide linkage scan of 795 microsatellite markers (761 autosomal, 34 X chromosome) was performed on Multidimensional Aptitude Battery subtests and verbal, performance and full scale scores, the WAIS-R Digit Symbol subtest, and two word-recognition tests (Schonell Graded Word Reading Test, Cambridge Contextual Reading Test) highly predictive of IQ. The sample included 361 families comprising 2-5 siblings who ranged in age from 15.7 to 22.2 years; genotype, but not phenotype, data were available for 81% of parents. A variance components analysis which controlled for age and sex effects showed significant linkage for the Cambridge reading test and performance IQ to the same region on chromosome 2, with respective LOD scores of 4.15 and 3.68. Suggestive linkage (LOD score > 2.2) for various measures was further supported on chromosomes 6, 7, 11, 14, 21 and 22. Where location of linkage peaks converged for IQ subtests within the same scale, the overall scale score provided increased evidence for linkage to that region over any individual subtest. Association studies of candidate genes, particularly those involved in neural transmission and development, will be directed to genes located under the linkage peaks identified in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les habitudes de consommation de substances psychoactives, le stress, l’obésité et les traits cardiovasculaires associés seraient en partie reliés aux mêmes facteurs génétiques. Afin d’explorer cette hypothèse, nous avons effectué, chez 119 familles multi-générationnelles québécoises de la région du Saguenay-Lac-St-Jean, des études d’association et de liaison pangénomiques pour les composantes génétiques : de la consommation usuelle d’alcool, de tabac et de café, de la réponse au stress physique et psychologique, des traits anthropométriques reliés à l’obésité, ainsi que des mesures du rythme cardiaque (RC) et de la pression artérielle (PA). 58000 SNPs et 437 marqueurs microsatellites ont été utilisés et l’annotation fonctionnelle des gènes candidats identifiés a ensuite été réalisée. Nous avons détecté des corrélations phénotypiques significatives entre les substances psychoactives, le stress, l’obésité et les traits hémodynamiques. Par exemple, les consommateurs d’alcool et de tabac ont montré un RC significativement diminué en réponse au stress psychologique. De plus, les consommateurs de tabac avaient des PA plus basses que les non-consommateurs. Aussi, les hypertendus présentaient des RC et PA systoliques accrus en réponse au stress psychologique et un indice de masse corporelle (IMC) élevé, comparativement aux normotendus. D’autre part, l’utilisation de tabac augmenterait les taux corporels d’épinéphrine, et des niveaux élevés d’épinéphrine ont été associés à des IMC diminués. Ainsi, en accord avec les corrélations inter-phénotypiques, nous avons identifié plusieurs gènes associés/liés à la consommation de substances psychoactives, à la réponse au stress physique et psychologique, aux traits reliés à l’obésité et aux traits hémodynamiques incluant CAMK4, CNTN4, DLG2, DAG1, FHIT, GRID2, ITPR2, NOVA1, NRG3 et PRKCE. Ces gènes codent pour des protéines constituant un réseau d’interactions, impliquées dans la plasticité synaptique, et hautement exprimées dans le cerveau et ses tissus associés. De plus, l’analyse des sentiers de signalisation pour les gènes identifiés (P = 0,03) a révélé une induction de mécanismes de Potentialisation à Long Terme. Les variations des traits étudiés seraient en grande partie liées au sexe et au statut d’hypertension. Pour la consommation de tabac, nous avons noté que le degré et le sens des corrélations avec l’obésité, les traits hémodynamiques et le stress sont spécifiques au sexe et à la pression artérielle. Par exemple, si des variations ont été détectées entre les hommes fumeurs et non-fumeurs (anciens et jamais), aucune différence n’a été observée chez les femmes. Nous avons aussi identifié de nombreux traits reliés à l’obésité dont la corrélation avec la consommation de tabac apparaît essentiellement plus liée à des facteurs génétiques qu’au fait de fumer en lui-même. Pour le sexe et l’hypertension, des différences dans l’héritabilité de nombreux traits ont également été observées. En effet, des analyses génétiques sur des sous-groupes spécifiques ont révélé des gènes additionnels partageant des fonctions synaptiques : CAMK4, CNTN5, DNM3, KCNAB1 (spécifique à l’hypertension), CNTN4, DNM3, FHIT, ITPR1 and NRXN3 (spécifique au sexe). Ces gènes codent pour des protéines interagissant avec les protéines de gènes détectés dans l’analyse générale. De plus, pour les gènes des sous-groupes, les résultats des analyses des sentiers de signalisation et des profils d’expression des gènes ont montré des caractéristiques similaires à celles de l’analyse générale. La convergence substantielle entre les déterminants génétiques des substances psychoactives, du stress, de l’obésité et des traits hémodynamiques soutiennent la notion selon laquelle les variations génétiques des voies de plasticité synaptique constitueraient une interface commune avec les différences génétiques liées au sexe et à l’hypertension. Nous pensons, également, que la plasticité synaptique interviendrait dans de nombreux phénotypes complexes influencés par le mode de vie. En définitive, ces résultats indiquent que des approches basées sur des sous-groupes et des réseaux amélioreraient la compréhension de la nature polygénique des phénotypes complexes, et des processus moléculaires communs qui les définissent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bipolar affective disorder (BPAD; manic-depressive illness) is characterized by episodes of mania and/or hypomania interspersed with periods of depression. Compelling evidence supports a significant genetic component in the susceptibility to develop BPAD. To date, however, linkage studies have attempted only to identify chromosomal loci that cause or increase the risk of developing BPAD. To determine whether there could be protective alleles that prevent or reduce the risk of developing BPAD, similar to what is observed in other genetic disorders, we used mental health wellness (absence of any psychiatric disorder) as the phenotype in our genome-wide linkage scan of several large multigeneration Old Order Amish pedigrees exhibiting an extremely high incidence of BPAD. We have found strong evidence for a locus on chromosome 4p at D4S2949 (maximum genehunter-plus nonparametric linkage score = 4.05, P = 5.22 × 10−4; sibpal Pempirical value <3 × 10−5) and suggestive evidence for a locus on chromosome 4q at D4S397 (maximum genehunter-plus nonparametric linkage score = 3.29, P = 2.57 × 10−3; sibpal Pempirical value <1 × 10−3) that are linked to mental health wellness. These findings are consistent with the hypothesis that certain alleles could prevent or modify the clinical manifestations of BPAD and perhaps other related affective disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite P. vivax remain little characterized. Results: We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of P. vivax in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for similar to 40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of P. vivax. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the pvmdr-1 locus, putatively associated with drug resistance. Conclusion: These findings support the feasibility of genome-wide association studies in carefully selected populations of P. vivax, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background : In tropical countries, losses caused by bovine tick Rhipicephalus (Boophilus) microplus infestation have a tremendous economic impact on cattle production systems. Genetic variation between Bos taurus and Bos indicus to tick resistance and molecular biology tools might allow for the identification of molecular markers linked to resistance traits that could be used as an auxiliary tool in selection programs. The objective of this work was to identify QTL associated with tick resistance/susceptibility in a bovine F2 population derived from the Gyr (Bos indicus) x Holstein (Bos taurus) cross. Results: Through a whole genome scan with microsatellite markers, we were able to map six genomic regions associated with bovine tick resistance. For most QTL, we have found that depending on the tick evaluation season (dry and rainy) different sets of genes could be involved in the resistance mechanism. We identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27. We also found a highly significant genome wide QTL for both dry and rainy seasons in the central region of BTA 23. Conclusions: The experimental F2 population derived from Gyr x Holstein cross successfully allowed the identification of six highly significant QTL associated with tick resistance in cattle. QTL located on BTA 23 might be related with the bovine histocompatibility complex. Further investigation of these QTL will help to isolate candidate genes involved with tick resistance in cattle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. Results: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10(-5) for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. Conclusions: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p <= 5 x 10(-7)). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1 x 10(-8)) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2 x 10(-8)) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5 x 10(-8); rs1229984-ADH1B, p = 7 x 10(-9); and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.