925 resultados para Genome-wide linkage
Resumo:
Migraine is a common neurovascular disorder with a complex envirogenomic aetiology. In an effort to identify migraine susceptibility genes, we conducted a study of the isolated population of Norfolk Island, Australia. A large portion of the permanent inhabitants of Norfolk Island are descended from 18th Century English sailors involved in the infamous mutiny on the Bounty and their Polynesian consorts. In total, 600 subjects were recruited including a large pedigree of 377 individuals with lineage to the founders. All individuals were phenotyped for migraine using International Classification of Headache Disorders-II criterion. All subjects were genotyped for a genome-wide panel of microsatellite markers. Genotype and phenotype data for the pedigree were analysed using heritability and linkage methods implemented in the programme SOLAR. Follow-up association analysis was performed using the CLUMP programme. A total of 154 migraine cases (25%) were identified indicating the Norfolk Island population is high-risk for migraine. Heritability estimation of the 377-member pedigree indicated a significant genetic component for migraine (h2 = 0.53, P = 0.016). Linkage analysis showed peaks on chromosome 13q33.1 (P = 0.003) and chromosome 9q22.32 (P = 0.008). Association analysis of the key microsatellites in the remaining 223 unrelated Norfolk Island individuals showed evidence of association, which strengthen support for the linkage findings (P ≤ 0.05). In conclusion, a genome-wide linkage analysis and follow-up association analysis of migraine in the genetic isolate of Norfolk Island provided evidence for migraine susceptibility loci on chromosomes 9q22.22 and 13q33.1.
Genome-wide linkage and association analyses implicate FASN in predisposition to Uterine Leiomyomata
Resumo:
Uterine leiomyomata (UL), the most prevalent pelvic tumors in women of reproductive age, pose a major public health problem given their high frequency, associated morbidities, and most common indication for hysterectomies. A genetic component to UL predisposition is supported by analyses of ethnic predisposition, twin studies, and familial aggregation. A genome-wide SNP linkage panel was genotyped and analyzed in 261 white UL-affected sister-pair families from the Finding Genes for Fibroids study. Two significant linkage regions were detected in 10p11 (LOD = 4.15) and 3p21 (LOD = 3.73), and five additional linkage regions were identified with LOD scores > 2.00 in 2q37, 5p13, 11p15, 12q14, and 17q25. Genome-wide association studies were performed in two independent cohorts of white women, and a meta-analysis was conducted. One SNP (rs4247357) was identified with a p value (p = 3.05 x 10(-8)) that reached genome-wide significance (odds ratio = 1.299). The candidate SNP is under a linkage peak and in a block of linkage disequilibrium in 17q25.3, which spans fatty acid synthase (FASN), coiled-coil-domain-containing 57 (CCDC57), and solute-carrier family 16, member 3 (SLC16A3). By tissue microarray immunohistochemistry, we found elevated (3-fold) FAS levels in UL-affected tissue compared to matched myometrial tissue. FAS transcripts and/or protein levels are upregulated in various neoplasms and implicated in tumor cell survival. FASN represents the initial UL risk allele identified in white women by a genome-wide, unbiased approach and opens a path to management and potential therapeutic intervention.
Resumo:
BACKGROUND: The tendency to conceive dizygotic (DZ) twins is a complex trait influenced by genetic and environmental factors. To search for new candidate loci for twinning, we conducted a genome-wide linkage scan in 525 families using microsatellite and single nucleotide polymorphism marker panels. METHODS AND RESULTS: Non-parametric linkage analyses, including 523 families containing a total of 1115 mothers of DZ twins (MODZT) from Australia and New Zealand (ANZ) and The Netherlands (NL), produced four linkage peaks above the threshold for suggestive linkage, including a highly suggestive peak at the extreme telomeric end of chromosome 6 with an exponential logarithm of odds \[(exp)LOD] score of 2.813 (P = 0.0002). Since the DZ twinning rate increases steeply with maternal age independent of genetic effects, we also investigated linkage including only families where at least one MODZT gave birth to her first set of twins before the age of 30. These analyses produced a maximum expLOD score of 2.718 (P = 0.0002), largely due to linkage signal from the ANZ cohort, however, ordered subset analyses indicated this result is most likely a chance finding in the combined dataset. Linkage analyses were also performed for two large DZ twinning families from the USA, one of which produced a peak on chromosome 2 in the region of two potential candidate genes. Sequencing of FSHR and FIGLA, along with INHBB in MODZTs from two large NL families with family specific linkage peaks directly over this gene, revealed a potentially functional variant in the 5' untranslated region of FSHR that segregated with the DZ twinning phenotype in the Utah family. CONCLUSION: Our data provide further evidence for complex inheritance of familial DZ twinning.
Resumo:
CONTEXT People meeting diagnostic criteria for anxiety or depressive disorders tend to score high on the personality scale of neuroticism. Studying this personality dimension can give insights into the etiology of these important psychiatric disorders. OBJECTIVES To undertake a comprehensive genome-wide linkage study of neuroticism using large study samples that have been measured multiple times and to compare the results between countries for replication and across time within countries for consistency. DESIGN Genome-wide linkage scan. SETTING Twin individuals and their family members from Australia and the Netherlands. PARTICIPANTS Nineteen thousand six hundred thirty-five sibling pairs completed self-report questionnaires for neuroticism up to 5 times over a period of up to 22 years. Five thousand sixty-nine sibling pairs were genotyped with microsatellite markers. METHODS Nonparametric linkage analyses were conducted in MERLIN-REGRESS for the mean neuroticism scores averaged across time. Additional analyses were conducted for the time-specific measures of neuroticism from each country to investigate consistency of linkage results. RESULTS Three chromosomal regions exceeded empirically derived thresholds for suggestive linkage using mean neuroticism scores: 10p 5 Kosambi cM (cM) (Dutch study sample), 14q 103 cM (Dutch study sample), and 18q 117 cM (combined Australian and Dutch study sample), but only 14q retained significance after correction for multiple testing. These regions all showed evidence for linkage in individual time-specific measures of neuroticism and 1 (18q) showed some evidence for replication between countries. Linkage intervals for these regions all overlap with regions identified in other studies of neuroticism or related traits and/or in studies of anxiety in mice. CONCLUSIONS Our results demonstrate the value of the availability of multiple measures over time and add to the optimism reported in recent reviews for replication of linkage regions for neuroticism. These regions are likely to harbor causal variants for neuroticism and its related psychiatric disorders and can inform prioritization of results from genome-wide association studies.
Resumo:
Latent class analysis was performed on migraine symptom data collected in a Dutch population sample (N = 12,210, 59% female) in order to obtain empirical groupings of individuals suffering from symptoms of migraine headache. Based on these heritable groupings (h(2) = 0.49, 95% CI: 0.41-0.57) individuals were classified as affected (migrainous headache) or unaffected. Genome-wide linkage analysis was performed using genotype data from 105 families with at least 2 affected siblings. In addition to this primary phenotype, linkage analyses were performed for the individual migraine symptoms. Significance levels, corrected for the analysis of multiple traits, were determined empirically via a novel simulation approach. Suggestive linkage for migrainous headache was found on chromosomes 1 (LOD = 1.63; pointwise P = 0.0031), 13 (LOD = 1.63; P = 0.0031), and 20 (LOD = 1.85; P = 0.0018). Interestingly, the chromosome 1 peak was located close to the ATP1A2 gene, associated with familial hemiplegic migraine type 2 (FHM2). Individual symptom analysis produced a LOD score of 1.97 (P = 0.0013) on chromosome 5 (photo/phonophobia), a LOD score of 2.13 (P = 0.0009) on chromosome 10 (moderate/severe pain intensity) and a near significant LOD score of 3.31 (P = 0.00005) on chromosome 13 (pulsating headache). These peaks were all located near regions previously reported in migraine linkage studies. Our results provide important replication and support for the presence of migraine susceptibility genes within these regions, and further support the utility of an LCA-based phenotyping approach and analysis of individual symptoms in migraine genetic research. Additionally, our novel "2-step" analysis and simulation approach provides a powerful means to investigate linkage to individual trait components.
Resumo:
The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383 markers. The data were analyzed using variance components linkage analysis. Heritability (h2) of ACR was significant in diabetic (h2=0.23, P=0.0007), and nondiabetic (h2=0.39, P=0.0001) relatives. There was no significant difference in genetic variance of ACR between diabetic and nondiabetic relatives (P=0.16), and the genetic correlation (rG=0.64) for ACR between these two groups was not different from 1 (P=0.12). These results suggested that similar genes contribute to variation in ACR in diabetic and nondiabetic relatives. This hypothesis was supported further by the linkage results.
Resumo:
A genome scan meta-analysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (P-SR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142-168 Mb) and 2q (103-134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119-152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for 'aggregate' genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16-33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies. Molecular Psychiatry (2009) 14, 774-785; doi:10.1038/mp.2008.135; published online 30 December 2008
Resumo:
Clear evidence exists for heritability of humanlongevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12-q22 (LOD = 2.95), chromosome 19p13.3-p13.11 (LOD = 3.76), and chromosome 19q13.11-q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed-effect meta-analysis approach, rs4420638 at the TOMM40/ APOE/APOC1 gene locus showed significant association with longevity (P-value = 9.6 × 10). By combined modeling of linkage and association, we showed that association of longevity with APOEe4 and APOEe2 alleles explain the linkage at 19q13.11-q13.32 with P-value = 0.02 and P-value = 1.0 × 10, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12-q22, and 19p13.3-p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.
Resumo:
Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome-wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome-wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single-nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10(-7)). These two SNPs were in high linkage disequilibrium (r(2) = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 x 10(-5)) was to an SNP within CDH13, whose protein product is a newly identified receptor for high-molecular-weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.
Resumo:
Background: The human condition known as Premature Ovarian Failure (POF) is characterized by loss of ovarian function before the age of 40. A majority of POF cases are sporadic, but 10–15% are familial, suggesting a genetic origin of the disease. Although several causal mutations have been identified, the etiology of POF is still unknown for about 90% of the patients. Methodology/Principal Findings: We report a genome-wide linkage and homozygosity analysis in one large consanguineous Middle-Eastern POF-affected family presenting an autosomal recessive pattern of inheritance. We identified two regions with a LODmax of 3.26 on chromosome 7p21.1-15.3 and 7q21.3-22.2, which are supported as candidate regions by homozygosity mapping. Sequencing of the coding exons and known regulatory sequences of three candidate genes (DLX5, DLX6 and DSS1) included within the largest region did not reveal any causal mutations. Conclusions/Significance: We detect two novel POF-associated loci on human chromosome 7, opening the way to the identification of new genes involved in the control of ovarian development and function.
Resumo:
Apolipoprotein E (ApoE) plays a major role in the metabolism of high density and low density lipoproteins (HDL and LDL). Its common protein isoforms (E2, E3, E4) are risk factors for coronary artery disease (CAD) and explain between 16 to 23% of the inter-individual variation in plasma apoE levels. Linkage analysis has been completed for plasma apoE levels in the GENOA study (Genetic Epidemiology Network of Atherosclerosis). After stratification of the population by lipoprotein levels and body mass index (BMI) to create more homogeneity with regard to biological context for apoE levels, Hispanic families showed significant linkage on chromosome 17q for two strata (LOD=2.93 at 104 cM for a low cholesterol group, LOD=3.04 at 111 cM for a low cholesterol, high HDLC group). Replication of 17q linkage was observed for apoB and apoE levels in the unstratified Hispanic and African-American populations, and for apoE levels in African-American families. Replication of this 17q linkage in different populations and strata provides strong support for the presence of gene(s) in this region with significant roles in the determination of inter-individual variation in plasma apoE levels. Through a positional and functional candidate gene approach, ten genes were identified in the 17q linked region, and 62 polymorphisms in these genes were genotyped in the GENOA families. Association analysis was performed with FBAT, GEE, and variance-component based tests followed by conditional linkage analysis. Association studies with partial coverage of TagSNPs in the gene coding for apolipoprotein H (APOH) were performed, and significant results were found for 2 SNPs (APOH_20951 and APOH_05407) in the Hispanic low cholesterol strata accounting for 3.49% of the inter-individual variation in plasma apoE levels. Among the other candidate genes, we identified a haplotype block in the ACE1 gene that contains two major haplotypes associated with apoE levels as well as total cholesterol, apoB and LDLC levels in the unstratified Hispanic population. Identifying genes responsible for the remaining 60% of inter-individual variation in plasma apoE level, will yield new insights into the understanding of genetic interactions involved in the lipid metabolism, and a more precise understanding of the risk factors leading to CAD. ^
Resumo:
Rheumatoid arthritis (RA), the most common autoimmune disease, is associated in families with other autoimmune diseases, including insulin-dependent diabetes mellitus (IDDM). Its genetic component has been suggested by familial aggregation (λs = 5), twin studies, and segregation analysis. HLA, which is the only susceptibility locus known, has been estimated to account for one-third of this component. The aim of this paper was to identify new RA loci. A genome scan was performed with 114 European Caucasian RA sib pairs from 97 nuclear families. Linkage was significant only for HLA (P < 2.5⋅10−5) and nominal for 19 markers in 14 other regions (P < 0.05). Four of the loci implicated in IDDM potentially overlap with these regions: the putative IDDM6, IDDM9, IDDM13, and DXS998 loci. The first two of these candidate regions, defined in the RA genome scan by the markers D18S68-D18S61-D18S469 (18q22–23) and D3S1267 (3q13), respectively, were studied in 194 additional RA sib pairs from 164 nuclear families. Support for linkage to chromosome 3 only was extended significantly (P = 0.002). The analysis of all 261 families provided a linkage evidence of P = 0.001 and suggested an interaction between this putative RA locus and HLA. This locus could account for 16% of the genetic component of RA. Candidate genes include those coding for CD80 and CD86, molecules involved in antigen-specific T cell recognition. In conclusion, this first genome scan in RA Caucasian families revealed 14 candidate regions, one of which was supported further by the study of a second set of families.
Resumo:
Background: Plasma triglyceride concentration is known to be a significant risk factor for cardiovascular disease (CVD). Previous studies have found that the level of triglycerides is strongly influenced by genetic factors. Methods: To identify quantitative trait loci influencing triglycerides, we conducted a genome-wide linkage scan on data from 485 Australian adult dizygotic twin pairs. Prior to linkage analysis, triglyceride values were adjusted for the effects of covariates including age, sex, time since last meal, time of blood collection (CT) and time to plasma separation. Results: The heritability estimate for ln(triglyceride) adjusted for all above fixed effects was 0.49. The highest multipoint LOD score observed was 2.94 (genome-wide p=0.049) on chromosome 7 (at 65cM). This 7p region contains several candidate genes. Two other regions with suggestive multipoint LOD scores were also identified on chromosome 4 (LOD score=2.26 at 62cM) and chromosome X (LOD score=2.01 at 81cM). Conclusions: The linkage peaks found represent newly identified regions for more detailed study, in particular the significant linkage observed on chromosome 7p13. \ (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A genome-wide linkage scan of 795 microsatellite markers (761 autosomal, 34 X chromosome) was performed on Multidimensional Aptitude Battery subtests and verbal, performance and full scale scores, the WAIS-R Digit Symbol subtest, and two word-recognition tests (Schonell Graded Word Reading Test, Cambridge Contextual Reading Test) highly predictive of IQ. The sample included 361 families comprising 2-5 siblings who ranged in age from 15.7 to 22.2 years; genotype, but not phenotype, data were available for 81% of parents. A variance components analysis which controlled for age and sex effects showed significant linkage for the Cambridge reading test and performance IQ to the same region on chromosome 2, with respective LOD scores of 4.15 and 3.68. Suggestive linkage (LOD score > 2.2) for various measures was further supported on chromosomes 6, 7, 11, 14, 21 and 22. Where location of linkage peaks converged for IQ subtests within the same scale, the overall scale score provided increased evidence for linkage to that region over any individual subtest. Association studies of candidate genes, particularly those involved in neural transmission and development, will be directed to genes located under the linkage peaks identified in this study.