911 resultados para Genome organization
Resumo:
The complete nucleotide sequence of the genomic RNA from the insect picorna-like virus Drosophila C virus (DCV) was determined. The DCV sequence predicts a genome organization different to that of other RNA virus families whose sequences are known. The single-stranded positive-sense genomic RNA is 9264 nucleotides in length and contains two large open reading frames (ORFs) which are separated by 191 nucleotides. The 5' ORF contains regions of similarities with the RNA-dependent RNA polymerase, helicase and protease domains of viruses from the picornavirus, comovirus and sequivirus families. The 3' ORF encodes the capsid proteins as confirmed by N-terminal sequence analysis of these proteins. The capsid protein coding region is unusual in two ways: firstly the cistron appears to lack an initiating methionine and secondly no subgenomic RNA is produced, suggesting that the proteins may be translated through internal initiation of translation from the genomic length RNA. The finding of this novel genome organization for DCV shows that this virus is not a member of the Picornaviridae as previously thought, but belongs to a distinct and hitherto unrecognized virus family.
Resumo:
The distribution of transposable elements (TEs) in a genome reflects a balance between insertion rate and selection against new insertions. Understanding the distribution of TEs therefore provides insights into the forces shaping the organization of genomes. Past research has shown that TEs tend to accumulate in genomic regions with low gene density and low recombination rate. However, little is known about the factors modulating insertion rates across the genome and their evolutionary significance. One candidate factor is gene expression, which has been suggested to increase local insertion rate by rendering DNA more accessible. We test this hypothesis by comparing the TE density around germline- and soma-expressed genes in the euchromatin of Drosophila melanogaster. Because only insertions that occur in the germline are transmitted to the next generation, we predicted a higher density of TEs around germline-expressed genes than soma-expressed genes. We show that the rate of TE insertions is greater near germline- than soma-expressed genes. However, this effect is partly offset by stronger selection for genome compactness (against excess noncoding DNA) on germline-expressed genes. We also demonstrate that the local genome organization in clusters of coexpressed genes plays a fundamental role in the genomic distribution of TEs. Our analysis shows that-in addition to recombination rate-the distribution of TEs is shaped by the interaction of gene expression and genome organization. The important role of selection for compactness sheds a new light on the role of TEs in genome evolution. Instead of making genomes grow passively, TEs are controlled by the forces shaping genome compactness, most likely linked to the efficiency of gene expression or its complexity and possibly their interaction with mechanisms of TE silencing.
Resumo:
The genome structure of Colletotrichum lindemuthianum in a set of diverse isolates was investigated using a combination of physical and molecular approaches. Flow cytometric measurement of genome size revealed significant variation between strains, with the smallest genome representing 59% of the largest. Southern-blot profiles of a cloned fungal telomere revealed a total chromosome number varying from 9 to 12. Chromosome separations using pulsed-field gel electrophoresis (PFGE) showed that these chromosomes belong to two distinct size classes: a variable number of small (< 2.5 Mb) polymorphic chromosomes and a set of unresolved chromosomes larger than 7 Mb. Two dispersed repeat elements were shown to cluster on distinct polymorphic minichromosomes. Single-copy flanking sequences from these repeat-containing clones specifically marked distinct small chromosomes. These markers were absent in some strains, indicating that part of the observed variability in genome organization may be explained by the presence or absence, in a given strain, of dispensable genomic regions and/or chromosomes.
Resumo:
Chromosome mapping and studies of the genomic organization of repetitive DNA sequences provide valuable insights that enhance our evolutionary and structural understanding of these sequences, as well as identifying chromosomal rearrangements and sex determination. This study investigated the occurrence and organization of repetitive DNA sequences in Leporinus elongatus using restriction enzyme digestion and the mapping of sequences by chromosomal fluorescence in situ hybridization (FISH). A 378-bp fragment with a 54.2% GC content was isolated after digestion with the SmaI restriction enzyme. BLASTN search found no similarity with previously described sequences, so this repetitive sequence was named LeSmaI. FISH experiments were conducted using L. elongatus and other Anostomidae species, i.e. L. macrocephalus,L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii, S. isognathus, and Abramites hypselonotus which detected signals that were unique to male and female L. elongatus individuals. Double-FISH using LeSmaI and 18S rDNA showed that LeSmaI was located in a nucleolus organizer region (NOR) in the male and female metaphases of L. elongatus. This report also discusses the role of repetitive DNA associated with NORs in the diversification of Anostomidae species karyotypes. Copyright © 2012 S. Karger AG, Basel.
Resumo:
Ultrastructural analysis of the polydnavirus of the braconid wasp Chelonus inanitus revealed that virions consist of one cylindrical nucleocapsid enveloped by a single unit membrane. Nucleocapsids have a constant diameter of 33.7 +/- 1.4 nm and a variable length of between 8 and 46 nm. Spreading of viral DNA showed that the genome consists of circular dsDNA molecules of variable sizes and measurement of the contour lengths indicated sizes of between 7 and 31 kbp. When virions were exposed to osmotic shock conditions to release the DNA, only one circular molecule was released per particle suggesting that the various DNA molecules are singly encapsidated in this bracovirus. The viral genome was seen to consist of at least 10 different segments and the aggregate genome size is in the order of 200 kbp. By partial digestion of viral DNA with HindIII or EcoRI in the presence of ethidium bromide and subsequent ligation with HindIII-cut pSP65 or EcoRI-cut pSP64 and transfection into Escherichia coli, libraries of 103 HindIII and 23 EcoRI clones were obtained. Southern blots revealed that complete and unrearranged segments were cloned with this approach, and restriction maps for five segments were obtained. Part of a 16.8 kbp segment was sequenced, found to be AT-rich (73%) and to contain six copies of a 17 bp repeated sequence. The development of the female reproductive tract in the course of pupal-adult development of the wasp was investigated and seen to be strictly correlated with the pigmentation pattern. By the use of a semiquantitative PCR, replication of viral DNA was observed to initiate at a specific stage of pupal-adult development.
Resumo:
At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees) has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini). The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced). We also report the genome organization (gene content and order), gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.
Resumo:
Repetitive DNA sequences constitute a great portion of the genome of eukaryotes and are considered key components to comprehend evolutionary mechanisms and karyotypic differentiation. Aiming to contribute to the knowledge of chromosome structure and organization of some repetitive DNA classes in the fish genome, chromosomes of two allopatric populations of Astyanax bockmanni were analyzed using classic cytogenetics techniques and fluorescent in situ hybridization, with probes for ribosomal DNA sequences, histone DNA and transposable elements. These Astyanax populations showed the same diploid number (2n = 50), however with differences in chromosome morphology, distribution of constitutive heterochromatin, and location of 18S rDNA and retroelement Rex3 sites. In contrast, sites for 5S rDNA and H1, H3 and H4 histones showed to be co-located and highly conserved. Our results indicate that dispersion and variability of 18S rDNA and heterochromatin sites are not associated with macro rearrangements in the chromosome structure of these populations. Similarly, distinct evolutionary mechanisms would act upon histone genes and 5S rDNA, contributing to chromosomal association and co-location of these sequences. Data obtained indicate that distinct mechanisms drive the spreading of repetitive DNAs in the genome of A. bockmanni. Also, mobile elements may account for the polymorphism of the major rDNA sites and heterochromatin in this genus. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Resumo:
Background: High-density tiling arrays and new sequencing technologies are generating rapidly increasing volumes of transcriptome and protein-DNA interaction data. Visualization and exploration of this data is critical to understanding the regulatory logic encoded in the genome by which the cell dynamically affects its physiology and interacts with its environment. Results: The Gaggle Genome Browser is a cross-platform desktop program for interactively visualizing high-throughput data in the context of the genome. Important features include dynamic panning and zooming, keyword search and open interoperability through the Gaggle framework. Users may bookmark locations on the genome with descriptive annotations and share these bookmarks with other users. The program handles large sets of user-generated data using an in-process database and leverages the facilities of SQL and the R environment for importing and manipulating data. A key aspect of the Gaggle Genome Browser is interoperability. By connecting to the Gaggle framework, the genome browser joins a suite of interconnected bioinformatics tools for analysis and visualization with connectivity to major public repositories of sequences, interactions and pathways. To this flexible environment for exploring and combining data, the Gaggle Genome Browser adds the ability to visualize diverse types of data in relation to its coordinates on the genome. Conclusions: Genomic coordinates function as a common key by which disparate biological data types can be related to one another. In the Gaggle Genome Browser, heterogeneous data are joined by their location on the genome to create information-rich visualizations yielding insight into genome organization, transcription and its regulation and, ultimately, a better understanding of the mechanisms that enable the cell to dynamically respond to its environment.
Resumo:
In this study, 222 genome survey sequences were generated for Trypanosoma rangeli strain P07 isolated from an opossum (Didelphis albiventris) in Minas Gerais State, Brazil. T. rangeli sequences were compared by BLASTX (Basic Local Alignment Search Tool X) analysis with the assembled contigs of Leishmania braziliensis, Leishmania infantum, Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Results revealed that 82% (182/222) of the sequences were associated with predicted proteins described, whereas 18% (40/222) of the sequences did not show significant identity with sequences deposited in databases, suggesting that they may represent T. rangeli-specific sequences. Among the 182 predicted sequences, 179 (80.6%) had the highest similarity with T. cruzi, 2 (0.9%) with T. brucei, and 1 (0.5%) with L. braziliensis. Computer analysis permitted the identification of members of various gene families described for trypanosomatids in the genome of T. rangeli, such as trans-sialidases, mucin-associated surface proteins, and major surface proteases (MSP or gp63). This is the first report identifying sequences of the MSP family in T. rangeli. Multiple sequence alignments showed that the predicted MSP of T. rangeli presented the typical characteristics of metalloproteases, such as the presence of the HEXXH motif, which corresponds to a region previously associated with the catalytic site of the enzyme, and various cysteine and proline residues, which are conserved among MSPs of different trypanosomatid species. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of MSP transcripts in epimastigote forms of T. rangeli.
Resumo:
"The host-parasite relationship" is a vast and diverse research field which, despite huge human and financial input over many years, remains largely shrouded in mystery. Clearly, the adaptation of parasites to their different host species, and to the different environmental stresses that they represent, depends on interactions with, and responses to, various molecules of host and/or parasite origin. The schistosome genome project is a primary strategy to reach the goal; this systematic research project has successfully developed novel technologies for qualitative and quantitative characterization of schistosome genes and genome organization by extensive international collaboration between top quality laboratories. Schistosomes are a family of parasitic blood flukes (Phylum Platyhelminthes), which have seven pairs of autosomal chromosomes and one pair of sex chromosomes (ZZ for a male worm and ZW for a female), of a haploid genome size of 2.7x108 base pairs (Simpson et al. 1982). Schistosomes are ideal model organisms for the development of genome mapping strategies since they have a small genome size comparable to that of well-characterized model organisms such as Caenorhabditis elegans (100 Mb) and Drosophila (165 Mb), and contain functional genes with a high level of homology to the host mammalian genes. Here we summarize the current progress in the schistosome genome project, the information of 3,047 transcribed genes (Expressed Sequence Tags; EST), complete sets of cDNA and genomic DNA libraries (including YAC and cosmid libraries) with a mapping technique to the well defined schistosome chromosomes. The schistosome genome project will further identify and characterize the key molecules that are responsible for host-parasite adaptation, i.e., successful growth, development, maturation and reproduction of the parasite within its host in the near future
Resumo:
We have analyzed the compositional properties of coding (protein encoding) and non-coding sequences of Plasmodium falciparum, a unicellular parasite characterized by an extremely AT-rich genome. GC% levels, base and dinucleotide frequencies were studied. We found that among the various factors that contribute to the properties of the sequences analyzed, the most relevant are the compositional constraints which operate on the whole genome
Resumo:
The exceptional genomic content and genome organization of the Acidianus filamentous virus 1 (AFV1) that infects the hyperthermophilic archaeon Acidianus hospitalis suggest that this virus might exploit an unusual mechanism of genome replication. An analysis of replicative intermediates of the viral genome by two-dimensional (2D) agarose gel electrophoresis revealed that viral genome replication starts by the formation of a D-loop and proceeds via strand displacement replication. Characterization of replicative intermediates using dark-field electron microscopy, in combination with the 2D agarose gel electrophoresis data, suggests that recombination plays a key role in the termination of AFV1 genome replication through the formation of terminal loops. A terminal protein was found to be attached to the ends of the viral genome. The results allow us to postulate a model of genome replication that relies on recombination events for initiation and termination.
Resumo:
Little is known about the relation between the genome organization and gene expression in Leishmania. Bioinformatic analysis can be used to predict genes and find homologies with known proteins. A model was proposed, in which genes are organized into large clusters and transcribed from only one strand, in the form of large polycistronic primary transcripts. To verify the validity of this model, we studied gene expression at the transcriptional, post-transcriptional and translational levels in a unique locus of 34kb located on chr27 and represented by cosmid L979. Sequence analysis revealed 115 ORFs on either DNA strand. Using computer programs developed for Leishmania genes, only nine of these ORFs, localized on the same strand, were predicted to code for proteins, some of which show homologies with known proteins. Additionally, one pseudogene, was identified. We verified the biological relevance of these predictions. mRNAs from nine predicted genes and proteins from seven were detected. Nuclear run-on analyses confirmed that the top strand is transcribed by RNA polymerase II and suggested that there is no polymerase entry site. Low levels of transcription were detected in regions of the bottom strand and stable transcripts were identified for four ORFs on this strand not predicted to be protein-coding. In conclusion, the transcriptional organization of the Leishmania genome is complex, raising the possibility that computer predictions may not be comprehensive.