994 resultados para Genetics, Medical
Resumo:
Purpose of review Our understanding of the causation of the chondrocalcinosis and other disorders characterized by ectopic mineralization is rapidly increasing, and genetic studies have contributed substantially to recent major advances in the field. This review will discuss what is known about the genetics of chondrocalcinosis and what we have learned from genetic studies to date. Recent findings: Chondrocalcinosis is one of a family of conditions associated with ectopic mineralization. This family also includes disorders of mineralization of bone and spinal and other ligaments, and vascular calcification. There has been increasing evidence of the key role of transport and metabolism of inorganic pyrophosphate (PPi) in control of mineralization, and as the likely explanation for the association of a variety of genetic variants with chondrocalcinosis and ectopic mineralization elsewhere. This may be an overly simplistic view of this family of conditions, with recent evidence suggesting that, for example, ANKH variants may not all predispose to chondrocalcinosis by effects on PPi transport, but may also influence chondrocyte maturation. Summary: Understanding the control of the process of mineralization and its tissue specificity are important steps in the search for rational therapies for these conditions.
Resumo:
The recent bankruptcy filing by deCODE, a company with an exceptional pedigree in associating genetic variance with disease onset, highlights the commercial risks of translational research. Indeed, deCODE's approach was similar to that adapted by academic researchers who seek to connect genetics and disease. We argue here that neither a purely corporate nor purely academic model is entirely appropriate for such research. Instead, we suggest that the private sector undertake the high-throughput elements of translational research, while the public sector and governments assume the role of providing long-term funding to develop gifted scientists with the confidence to attempt to use genetic data as a stepping stone to a truly mechanistic understanding of complex disease.
Resumo:
A presentation of two cases of Dubowitz syndrome in monozigous twin girls. The syndrome is a rare congenital disorder, the main clinical aspects of which include retarded intrauterine and post-natal growth, microcephaly, peculiar face and an eczemic rash, resulting from photosensitivity of the regions exposed to sunlight.
Resumo:
With advances in pediatric cardiology and cardiac surgery, the population of adults with congenital heart disease (CHD) has increased. In the current era, there are more adults with CHD than children. This population has many unique issues and needs. They have distinctive forms of heart failure, and their cardiac disease can be associated with pulmonary hypertension, thromboemboli, complex arrhythmias and sudden death.Medical aspects that need to be considered relate to the long-term and multisystemic effects of single-ventricle physiology, cyanosis, systemic right ventricles, complex intracardiac baffles and failing subpulmonary right ventricles. Since the 2001 Canadian Cardiovascular Society Consensus Conference report on the management of adults with CHD, there have been significant advances in the understanding of the late outcomes, genetics, medical therapy and interventional approaches in the field of adult CHD. Therefore, new clinical guidelines have been written by Canadian adult CHD physicians in collaboration with an international panel of experts in the field. The present executive summary is a brief overview of the new guidelines and includes the recommendations for interventions. The complete document consists of four manuscripts that are published online in the present issue of The Canadian Journal of Cardiology, including sections on genetics, clinical outcomes, recommended diagnostic workup, surgical and interventional options, treatment of arrhythmias, assessment of pregnancy and contraception risks, and follow-up requirements. The complete document and references can also be found at www.ccs.ca or www.cachnet.org.
Resumo:
Idiopathic or isolated clubfoot is a common orthopedic birth defect that affects approximately 135,000 children worldwide. It is characterized by equinus, varus and adductus deformities of the ankle and foot. Correction of clubfoot involves months of serial manipulations, castings and bracing, with surgical correction needed in forty percent of cases. Multifactorial etiology has been suggested in numerous studies with both environmental and genetic factors playing an etiologic role. Maternal smoking during pregnancy is the only common environmental factor that has consistently been shown to increase the risk for clubfoot. Moreover, a positive family history of clubfoot and maternal smoking increases the risk of clubfoot twenty fold. These findings suggest that genetic variation in smoking metabolism genes may increase susceptibility to clubfoot. Based on this reasoning, we interrogated eight candidate genes, chosen based on their involvement in phase 1 and 2 cigarette smoke metabolism. Twenty-two SNPs and two null alleles in eight genes (CYP1A1, CYP1A2, CYP1B1, CYP2A6, EPHX1, NAT2, GSTM1 and GSTT1) were genotyped in a dataset composed of nonHispanic white and Hispanic multiplex and simplex families. Only one SNP in CYP1A1, rs1048943, had significantly altered transmission in the aggregate and multiplex NHW datasets (p=0.003 and p=0.009). Perturbation of CYP1A1 by rs1048943 polymorphism causes an increase in the amount of harmful, adduct forming metabolic intermediates. A significant gene interaction between EPHX1 and NAT2 was also found (p=0.007). This interaction may affect the metabolism of harmful metabolic intermediates. Additionally, marginal interactions were found for other xenobiotic genes and these interactions may play a contributory role in clubfoot. Importantly, for CYP1A2, significant maternal (p=0.03; RR=1.24; 95% CI: 1.04-1.44) and fetal (p=0.01; RR=1.33; 95% CI: 1.13-1.54) genotypic effects were identified suggesting that both maternal and fetal genotypes impact normal limb development. No association was found for maternal smoking status and tobacco metabolism genes. Together, these results suggest that xenobiotic metabolism genes may play a contributory role in the etiology of clubfoot regardless of maternal smoking status and may impact foot development through perturbation of tobacco metabolic pathways.
Resumo:
Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor suppressor disorder characterized by hamartomas, or benign growths, in various organ systems. Inactivating mutations in either the TSC1 or the TSC2 gene cause most cases of TSC. Recently, the use of ovarian specific conditional knock-out mouse models has demonstrated a crucial role of the TSC genes in ovarian function. Mice with complete deletion of Tsc1 or Tsc2 showed accelerated ovarian follicle activation and subsequent premature follicular depletion, consistent with the human condition premature ovarian failure (POF). POF is defined in women as the cessation of menses before the age of 40 and elevated levels of follicle stimulating hormone (FSH). The prevalence of POF is estimated to be 1%, affecting a substantial number of women in the general population. Nonetheless, the etiology of most cases of POF remains unknown. Based on the mouse model results, we hypothesized that the human TSC1 and TSC2 genes are likely to be crucial for ovarian development and function. Moreover, since women with TSC already have one inactivated TSC gene, we further hypothesized that they may show a higher prevalence of POF. To test this hypothesis, we surveyed 1000 women with TSC belonging to the Tuberous Sclerosis Alliance, a national support organization. 182 questionnaires were analyzed for information on menstrual and reproductive function, as well as TSC. This self-reported data revealed 8 women (4.4%) with possible POF, as determined by menstrual history report and additional supportive data. This prevalence is much higher than 1% in the general population. Data from all women suggested other reproductive pathology associated with TSC such as a high rate of miscarriage (41.2%) and menstrual irregularity of any kind (31.2%). These results establish a previously unappreciated effect of TSC on women’s reproductive health. Moreover, these data suggest that perturbations in the cellular pathways regulated by the TSC genes may play an important role in reproductive function.
Resumo:
C-Reactive Protein (CRP) is a biomarker indicating tissue damage, inflammation, and infection. High-sensitivity CRP (hsCRP) is an emerging biomarker often used to estimate an individual’s risk for future coronary heart disease (CHD). hsCRP levels falling below 1.00 mg/l indicate a low risk for developing CHD, levels ranging between 1.00 mg/l and 3.00 mg/l indicate an elevated risk, and levels exceeding 3.00 mg/l indicate high risk. Multiple Genome-Wide Association Studies (GWAS) have identified a number of genetic polymorphisms which influence CRP levels. SNPs implicated in such studies have been found in or near genes of interest including: CRP, APOE, APOC, IL-6, HNF1A, LEPR, and GCKR. A strong positive correlation has also been found to exist between CRP levels and BMI, a known risk factor for CHD and a state of chronic inflammation. We conducted a series of analyses designed to identify loci which interact with BMI to influence CRP levels in a subsample of European-Americans in the ARIC cohort. In a stratified GWA analysis, 15 genetic regions were identified as having significantly (p-value < 2.00*10-3) distinct effects on hsCRP levels between the two obesity strata: lean (18.50 kg/m2 < BMI < 24.99 kg/m2) and obese (BMI ≥ 30.00 kg/m2). A GWA analysis performed on all individuals combined (i.e. not a priori stratified for obesity status) with the inclusion of an additional parameter for BMI by gene interaction, identified 11 regions which interact with BMI to influence hsCRP levels. Two regions containing the genes GJA5 and GJA8 (on chromosome 1) and FBXO11 (on chromosome 2) were identified in both methods of analysis suggesting that these genes possibly interact with BMI to influence hsCRP levels. We speculate that atrial fibrillation (AF), age-related cataracts and the TGF-β pathway may be the biological processes influenced by the interaction of GJA5, GJA8 and FBXO11, respectively, with BMI to cause changes in hsCRP levels. Future studies should focus on the influence of gene x bmi interaction on AF, age-related cataracts and TGF-β.
Resumo:
Breast cancer is the most common cancer diagnosis and second leading cause of death in women. Risk factors associated with breast cancer include: increased age, alcohol consumption, cigarette smoking, white race, physical inactivity, benign breast conditions, reproductive and hormonal factors, dietary factors, and family history. Hereditary breast and ovarian cancer syndrome (HBOC) is caused by mutations in the BRCA1 and BRCA2 genes. Women carrying a mutation in these genes are at an increased risk to develop a second breast cancer. Contralateral breast cancer is the most common second primary cancer in patients treated for a first breast cancer. Other risk factors for developing contralateral breast cancer include a strong family history of breast cancer, age of onset of first primary breast cancer, and if the first primary was a lobular carcinoma, which has an increased risk of being bilateral. A retrospective chart review was performed on a select cohort of women in an IRB approved database at MD Anderson Cancer Center. The final cohort contained 572 women who tested negative for a BRCA1 or BRCA2 mutation, had their primary invasive breast cancer diagnosed under the age of 50, and had a BRCAPro risk assessment number over 10%. Of the 572 women, 97 women developed contralateral breast cancer. A number of predictors of contralateral breast cancer were looked at between the two groups. Using univariable Cox Proportional Hazard model, thirteen statistically interesting risk factors were found, defined as having a p-value under 0.2. Multivariable stepwise Cox Proportional Hazard model found four statistically significant variables out of the thirteen found in the univariable analysis. In our study population, the incidence of contralateral breast cancer was 17%. Four statistically significant variables were identified. Undergoing a prophylactic mastectomy was found to reduce the risk of developing contralateral breast cancer, while not having a prophylactic mastecomy, a young age at primary diagnosis, having a positive estrogen receptor status of the primary tumor, and having a family history of breast cancer increased a woman’s risk to develop contralateral breast cancer.
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition
Resumo:
BACKGROUND: Mismatch repair deficient (MMRD) colorectal (CRC) or endometrial (EC) cancers in the absence of MLH1 promoter hypermethylation and BRAF mutations are suggestive of Lynch syndrome (LS). Positive germline genetic test results confirm LS. It is unclear if individuals with MMRD tumors but no identified germline mutation or sporadic cause (MMRD+/germline-) have LS. HYPOTHESIS: Since LS is hereditary, individuals with LS should have a stronger family history of LS-related cancers than individuals with sporadic tumors. We hypothesized that MMRD+/germline- CRC and/or EC patients would have less suggestive family histories than LS CRC and/or EC patients. METHODS: 253 individuals with an MMRD CRC or EC who underwent genetic counseling at one institution were included in analysis in 1 of 4 groups: LS, MMRD+/germline-, MMRD+/VUS, sporadic MSI-H (MMRD tumor with MLH1 promoter hypermethylation or BRAF mutation). Family histories were analyzed utilizing MMRpro and PREMM1,2,6. Kruskal-Wallis tests were used to compare family history scores. Logistic regression was used to determine what factors were predictive of LS. RESULTS: MMRD+/germline- individuals had significantly lower median family history scores (PREMM1,2,6=7.3, MMRpro=8.1) than LS individuals (PREMM1,2,6=26.1, MMRpro=89.8, p CONCLUSION: MMRD+/germline- individuals have less suggestive family histories of LS than individuals with LS, but more suggestive family histories than sporadic MSI-H individuals. CRC and/or EC patients with abnormal tumor studies are more likely to have a germline LS mutation if they have a family history suggestive of hereditary cancer. These results imply that the MMRD+/germline- group may not all have LS. This finding highlights the need to determine other somatic, epigenetic or germline causes of MMRD tumors so that these patients and their families can be accurately counseled regarding screening and management.
Resumo:
"Based upon three lectures on eugenics delivered at Oberlin college in April, 1910."
Resumo:
Item 985
Resumo:
The hypothesis of the existence of one or more schizophrenia susceptibility loci on chromosome 22q is supported by reports of genetic linkage and association, meta-analyses of linkage, and the observation of elevated risk for psychosis in people with velocardiofacial syndrome, caused by 22q11 microdeletions. We tested this hypothesis by evaluating 10 microsatellite markers spanning 22q in a multicenter sample of 779 pedigrees. We also incorporated age at onset and sex into the analysis as covariates. No significant evidence for linkage to schizophrenia or for linkage associated with earlier age at onset, gender, or heterogeneity across sites was observed. We interpret these findings to mean that the population-wide effects of putative 22q schizophrenia susceptibility loci are too weak to detect with linkage analysis even in large samples.
Resumo:
Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7) mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB) guidelines, we found a male mutation rate of 1 . 0 4 × 1 0− 4 and a female mutation rate of 5 . 1 8 × 1 0− 5 with an overall mutation rate of approximately 7 . 7 7 × 1 0− 5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM) and the one-step stepwise mutation model (SMM). In this study, we found that this locus fits into the one-step mutation model (SMM) mechanism in six out of seven instances similar to STR loci.
Resumo:
In this study we have identified key genes that are critical in development of astrocytic tumors. Meta-analysis of microarray studies which compared normal tissue to astrocytoma revealed a set of 646 differentially expressed genes in the majority of astrocytoma. Reverse engineering of these 646 genes using Bayesian network analysis produced a gene network for each grade of astrocytoma (Grade I–IV), and ‘key genes’ within each grade were identified. Genes found to be most influential to development of the highest grade of astrocytoma, Glioblastoma multiforme were: COL4A1, EGFR, BTF3, MPP2, RAB31, CDK4, CD99, ANXA2, TOP2A, and SERBP1. All of these genes were up-regulated, except MPP2 (down regulated). These 10 genes were able to predict tumor status with 96–100% confidence when using logistic regression, cross validation, and the support vector machine analysis. Markov genes interact with NFkβ, ERK, MAPK, VEGF, growth hormone and collagen to produce a network whose top biological functions are cancer, neurological disease, and cellular movement. Three of the 10 genes - EGFR, COL4A1, and CDK4, in particular, seemed to be potential ‘hubs of activity’. Modified expression of these 10 Markov Blanket genes increases lifetime risk of developing glioblastoma compared to the normal population. The glioblastoma risk estimates were dramatically increased with joint effects of 4 or more than 4 Markov Blanket genes. Joint interaction effects of 4, 5, 6, 7, 8, 9 or 10 Markov Blanket genes produced 9, 13, 20.9, 26.7, 52.8, 53.2, 78.1 or 85.9%, respectively, increase in lifetime risk of developing glioblastoma compared to normal population. In summary, it appears that modified expression of several ‘key genes’ may be required for the development of glioblastoma. Further studies are needed to validate these ‘key genes’ as useful tools for early detection and novel therapeutic options for these tumors.