999 resultados para Genetic representations


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of the genetic changes in human tumors is often problematical because of the presence of normal stroma and the limited availability of pure tumor DNA. However, large amounts of highly reproducible “representations” of tumor and normal genomes can be made by PCR from nanogram amounts of restriction endonuclease cleaved DNA that has been ligated to oligonucleotide adaptors. We show here that representations are useful for many types of genetic analyses, including measuring relative gene copy number, loss of heterozygosity, and comparative genomic hybridization. Representations may be prepared even from sorted nuclei from fixed and archived tumor biopsies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hub location problem is an NP-hard problem that frequently arises in the design of transportation and distribution systems, postal delivery networks, and airline passenger flow. This work focuses on the Single Allocation Hub Location Problem (SAHLP). Genetic Algorithms (GAs) for the capacitated and uncapacitated variants of the SAHLP based on new chromosome representations and crossover operators are explored. The GAs is tested on two well-known sets of real-world problems with up to 200 nodes. The obtained results are very promising. For most of the test problems the GA obtains improved or best-known solutions and the computational time remains low. The proposed GAs can easily be extended to other variants of location problems arising in network design planning in transportation systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the complexity of evolutionary design problems grow, so too must the quality of solutions scale to that complexity. In this research, we develop a genetic programming system with individuals encoded as tree-based generative representations to address scalability. This system is capable of multi-objective evaluation using a ranked sum scoring strategy. We examine Hornby's features and measures of modularity, reuse and hierarchy in evolutionary design problems. Experiments are carried out, using the system to generate three-dimensional forms, and analyses of feature characteristics such as modularity, reuse and hierarchy were performed. This work expands on that of Hornby's, by examining a new and more difficult problem domain. The results from these experiments show that individuals encoded with those three features performed best overall. It is also seen, that the measures of complexity conform to the results of Hornby. Moving forward with only this best performing encoding, the system was applied to the generation of three-dimensional external building architecture. One objective considered was passive solar performance, in which the system was challenged with generating forms that optimize exposure to the Sun. The results from these and other experiments satisfied the requirements. The system was shown to scale well to the architectural problems studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the possibility of interpreting the degeneracy of the genetic code, i.e., the feature that different codons (base triplets) of DNA are transcribed into the same amino acid, as the result of a symmetry breaking process, in the context of finite groups. In the first part of this paper, we give the complete list of all codon representations (64-dimensional irreducible representations) of simple finite groups and their satellites (central extensions and extensions by outer automorphisms). In the second part, we analyze the branching rules for the codon representations found in the first part by computational methods, using a software package for computational group theory. The final result is a complete classification of the possible schemes, based on finite simple groups, that reproduce the multiplet structure of the genetic code. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Zebrafish Information Network, ZFIN, is a WWW community resource of zebrafish genetic, genomic and developmental research information (http://zfin.org). ZFIN provides an anatomical atlas and dictionary, developmental staging criteria, research methods, pathology information and a link to the ZFIN relational database (http://zfin.org/ZFIN/). The database, built on a relational, object-oriented model, provides integrated information about mutants, genes, genetic markers, mapping panels, publications and contact information for the zebrafish research community. The database is populated with curated published data, user submitted data and large dataset uploads. A broad range of data types including text, images, graphical representations and genetic maps supports the data. ZFIN incorporates links to other genomic resources that provide sequence and ortholog data. Zebrafish nomenclature guidelines and an automated registration mechanism for new names are provided. Extensive usability testing has resulted in an easy to learn and use forms interface with complex searching capabilities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to carry out high-resolution genetic mapping at high throughput in the mouse is a critical rate-limiting step in the generation of genetically anchored contigs in physical mapping projects and the mapping of genetic loci for complex traits. To address this need, we have developed an efficient, high-resolution, large-scale genome mapping system. This system is based on the identification of polymorphic DNA sites between mouse strains by using interspersed repetitive sequence (IRS) PCR. Individual cloned IRS PCR products are hybridized to a DNA array of IRS PCR products derived from the DNA of individual mice segregating DNA sequences from the two parent strains. Since gel electrophoresis is not required, large numbers of samples can be genotyped in parallel. By using this approach, we have mapped > 450 polymorphic probes with filters containing the DNA of up to 517 backcross mice, potentially allowing resolution of 0.14 centimorgan. This approach also carries the potential for a high degree of efficiency in the integration of physical and genetic maps, since pooled DNAs representing libraries of yeast artificial chromosomes or other physical representations of the mouse genome can be addressed by hybridization of filter representations of the IRS PCR products of such libraries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictive testing is one of the new genetic technologies which, in conjunction with developing fields such as pharmacogenomics, promises many benefits for preventive and population health. Understanding how individuals appraise and make genetic test decisions is increasingly relevant as the technology expands. Lay understandings of genetic risk and test decision-making, located within holistic life frameworks including family or kin relationships, may vary considerably from clinical representations of these phenomena. The predictive test for Huntington's disease (HD), whilst specific to a single-gene, serious, mature-onset but currently untreatable disorder, is regarded as a model in this context. This paper reports upon a qualitative Australian study which investigated predictive test decision-making by individuals at risk for HD, the contexts of their decisions and the appraisals which underpinned them. In-depth interviews were conducted in Australia with 16 individuals at 50% risk for HD, with variation across testing decisions, gender, age and selected characteristics. Findings suggested predictive testing was regarded as a significant life decision with important implications for self and others, while the right not to know genetic status was staunchly and unanimously defended. Multiple contexts of reference were identified within which test decisions were located, including intra- and inter-personal frameworks, family history and experience of HID, and temporality. Participants used two main criteria in appraising test options: perceived value of, or need for the test information, for self and/or significant others, and degree to which such information could be tolerated and managed, short and long-term, by self and/or others. Selected moral and ethical considerations involved in decision-making are examined, as well as the clinical and socio-political contexts in which predictive testing is located. The paper argues that psychosocial vulnerabilities generated by the availability of testing technologies and exacerbated by policy imperatives towards individual responsibility and self-governance should be addressed at broader societal levels. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A formalism for modelling the dynamics of Genetic Algorithms (GAs) using methods from statistical mechanics, originally due to Prugel-Bennett and Shapiro, is reviewed, generalized and improved upon. This formalism can be used to predict the averaged trajectory of macroscopic statistics describing the GA's population. These macroscopics are chosen to average well between runs, so that fluctuations from mean behaviour can often be neglected. Where necessary, non-trivial terms are determined by assuming maximum entropy with constraints on known macroscopics. Problems of realistic size are described in compact form and finite population effects are included, often proving to be of fundamental importance. The macroscopics used here are cumulants of an appropriate quantity within the population and the mean correlation (Hamming distance) within the population. Including the correlation as an explicit macroscopic provides a significant improvement over the original formulation. The formalism is applied to a number of simple optimization problems in order to determine its predictive power and to gain insight into GA dynamics. Problems which are most amenable to analysis come from the class where alleles within the genotype contribute additively to the phenotype. This class can be treated with some generality, including problems with inhomogeneous contributions from each site, non-linear or noisy fitness measures, simple diploid representations and temporally varying fitness. The results can also be applied to a simple learning problem, generalization in a binary perceptron, and a limit is identified for which the optimal training batch size can be determined for this problem. The theory is compared to averaged results from a real GA in each case, showing excellent agreement if the maximum entropy principle holds. Some situations where this approximation brakes down are identified. In order to fully test the formalism, an attempt is made on the strong sc np-hard problem of storing random patterns in a binary perceptron. Here, the relationship between the genotype and phenotype (training error) is strongly non-linear. Mutation is modelled under the assumption that perceptron configurations are typical of perceptrons with a given training error. Unfortunately, this assumption does not provide a good approximation in general. It is conjectured that perceptron configurations would have to be constrained by other statistics in order to accurately model mutation for this problem. Issues arising from this study are discussed in conclusion and some possible areas of further research are outlined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multi-chromosome GA (Multi-GA) was developed, based upon concepts from the natural world, allowing improved flexibility in a number of areas including representation, genetic operators, their parameter rates and real world multi-dimensional applications. A series of experiments were conducted, comparing the performance of the Multi-GA to a traditional GA on a number of recognised and increasingly complex test optimisation surfaces, with promising results. Further experiments demonstrated the Multi-GA's flexibility through the use of non-binary chromosome representations and its applicability to dynamic parameterisation. A number of alternative and new methods of dynamic parameterisation were investigated, in addition to a new non-binary 'Quotient crossover' mechanism. Finally, the Multi-GA was applied to two real world problems, demonstrating its ability to handle mixed type chromosomes within an individual, the limited use of a chromosome level fitness function, the introduction of new genetic operators for structural self-adaptation and its viability as a serious real world analysis tool. The first problem involved optimum placement of computers within a building, allowing the Multi-GA to use multiple chromosomes with different type representations and different operators in a single individual. The second problem, commonly associated with Geographical Information Systems (GIS), required a spatial analysis location of the optimum number and distribution of retail sites over two different population grids. In applying the Multi-GA, two new genetic operators (addition and deletion) were developed and explored, resulting in the definition of a mechanism for self-modification of genetic material within the Multi-GA structure and a study of this behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current dominance of African runners in long-distance running is an intriguing phenomenon that highlights the close relationship between genetics and physical performance. Many factors in the interesting interaction between genotype and phenotype (eg, high cardiorespiratory fitness, higher hemoglobin concentration, good metabolic efficiency, muscle fiber composition, enzyme profile, diet, altitude training, and psychological aspects) have been proposed in the attempt to explain the extraordinary success of these runners. Increasing evidence shows that genetics may be a determining factor in physical and athletic performance. But, could this also be true for African long-distance runners? Based on this question, this brief review proposed the role of genetic factors (mitochondrial deoxyribonucleic acid, the Y chromosome, and the angiotensin-converting enzyme and the alpha-actinin-3 genes) in the amazing athletic performance observed in African runners, especially the Kenyans and Ethiopians, despite their environmental constraints.