963 resultados para Genetic programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the use of Genetic Programming (GP) to create an approximate model for the non-linear relationship between flexural stiffness, length, mass per unit length and rotation speed associated with rotating beams and their natural frequencies. GP, a relatively new form of artificial intelligence, is derived from the Darwinian concept of evolution and genetics and it creates computer programs to solve problems by manipulating their tree structures. GP predicts the size and structural complexity of the empirical model by minimizing the mean square error at the specified points of input-output relationship dataset. This dataset is generated using a finite element model. The validity of the GP-generated model is tested by comparing the natural frequencies at training and at additional input data points. It is found that by using a non-dimensional stiffness, it is possible to get simple and accurate function approximation for the natural frequency. This function approximation model is then used to study the relationships between natural frequency and various influencing parameters for uniform and tapered beams. The relations obtained with GP model agree well with FEM results and can be used for preliminary design and structural optimization studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rowland, J. J. (2004) On Genetic Programming and Knowledge Discovery in Transcriptome Data. Proc. IEEE Congress on Evolutionary Computation, Portland, Oregon. pp 158-165. ISBN 0-7803-8515-2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rowland, J.J. and Taylor, J. (2002). Adaptive denoising in spectral analysis by genetic programming. Proc. IEEE Congress on Evolutionary Computation (part of WCCI), May 2002. pp 133-138. ISBN 0-7803-7281-6

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes how genetic programming is applied to evolving controllers for the minimum time swing up and inverted balance tasks of the continuous state and action: limited torque acrobot. The best swing-up controller is able to swing the acrobot up to a position very close to the inverted ‘handstand’ position in a very short time, shorter than that of Coulom (2004), who applied the same constraints on the applied torque values, and to take only slightly longer than the approach by Lai et al. (2009) where far larger torque values were allowed. The best balance controller is able to balance the acrobot in the inverted position when starting from the balance position for the length of time used in the fitness function in all runs; furthermore, 47 out of 50 of the runs evolve controllers able to maintain the balance position for an extended period, an improvement on the balance controllers generated by Dracopoulos and Nichols (2012), which this paper is extended from. The most successful balance controller is also able to balance the acrobot when starting from a small offset from the balance position for this extended period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recaí sob a responsabilidade da Marinha Portuguesa a gestão da Zona Económica Exclusiva de Portugal, assegurando a sua segurança da mesma face a atividades criminosas. Para auxiliar a tarefa, é utilizado o sistema Oversee, utilizado para monitorizar a posição de todas as embarcações presentes na área afeta, permitindo a rápida intervenção da Marinha Portuguesa quando e onde necessário. No entanto, o sistema necessita de transmissões periódicas constantes originadas nas embarcações para operar corretamente – casos as transmissões sejam interrompidas, deliberada ou acidentalmente, o sistema deixa de conseguir localizar embarcações, dificultando a intervenção da Marinha. A fim de colmatar esta falha, é proposto adicionar ao sistema Oversee a capacidade de prever as posições futuras de uma embarcação com base no seu trajeto até à cessação das transmissões. Tendo em conta os grandes volumes de dados gerados pelo sistema (históricos de posições), a área de Inteligência Artificial apresenta uma possível solução para este problema. Atendendo às necessidades de resposta rápida do problema abordado, o algoritmo de Geometric Semantic Genetic Programming baseado em referências de Vanneschi et al. apresenta-se como uma possível solução, tendo já produzido bons resultados em problemas semelhantes. O presente trabalho de tese pretende integrar o algoritmo de Geometric Semantic Genetic Programming desenvolvido com o sistema Oversee, a fim de lhe conceder capacidades preditivas. Adicionalmente, será realizado um processo de análise de desempenho a fim de determinar qual a ideal parametrização do algoritmo. Pretende-se com esta tese fornecer à Marinha Portuguesa uma ferramenta capaz de auxiliar o controlo da Zona Económica Exclusiva Portuguesa, permitindo a correta intervenção da Marinha em casos onde o atual sistema não conseguiria determinar a correta posição da embarcação em questão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Robocup Rescue Simulation System (RCRSS) is a dynamic system of multi-agent interaction, simulating a large-scale urban disaster scenario. Teams of rescue agents are charged with the tasks of minimizing civilian casualties and infrastructure damage while competing against limitations on time, communication, and awareness. This thesis provides the first known attempt of applying Genetic Programming (GP) to the development of behaviours necessary to perform well in the RCRSS. Specifically, this thesis studies the suitability of GP to evolve the operational behaviours required of each type of rescue agent in the RCRSS. The system developed is evaluated in terms of the consistency with which expected solutions are the target of convergence as well as by comparison to previous competition results. The results indicate that GP is capable of converging to some forms of expected behaviour, but that additional evolution in strategizing behaviours must be performed in order to become competitive. An enhancement to the standard GP algorithm is proposed which is shown to simplify the initial search space allowing evolution to occur much quicker. In addition, two forms of population are employed and compared in terms of their apparent effects on the evolution of control structures for intelligent rescue agents. The first is a single population in which each individual is comprised of three distinct trees for the respective control of three types of agents, the second is a set of three co-evolving subpopulations one for each type of agent. Multiple populations of cooperating individuals appear to achieve higher proficiencies in training, but testing on unseen instances raises the issue of overfitting.