928 resultados para Genetic diversity and structure
Resumo:
Cedrus atlantica (Pinaceae) is a large and exceptionally long-lived conifer native to the Rif and Atlas Mountains of North Africa. To assess levels and patterns of genetic diversity of this species. samples were obtained throughout the natural range in Morocco and from a forest plantation in Arbucies, Girona (Spain) and analyzed using RAPD markers. Within-population genetic diversity was high and comparable to that revealed by isozymes. Managed populations harbored levels of genetic variation similar to those found in their natural counterparts. Genotypic analyses Of Molecular variance (AMOVA) found that most variation was within populations. but significant differentiation was also found between populations. particularly in Morocco. Bayesian estimates of F,, corroborated the AMOVA partitioning and provided evidence for Population differentiation in C. atlantica. Both distance- and Bayesian-based Clustering methods revealed that Moroccan populations comprise two genetically distinct groups. Within each group, estimates of population differentiation were close to those previously reported in other gymnosperms. These results are interpreted in the context of the postglacial history of the species and human impact. The high degree of among-group differentiation recorded here highlights the need for additional conservation measures for some Moroccan Populations of C. atlantica.
Resumo:
Abstract Background: The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North+East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. Results: A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST=0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST=0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. Conclusions: The variation found at group and sub-group levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.
Resumo:
Acquiring sufficient information on the genetic variation, genetic differentiation, and the ecological and genetic relationships among individuals and populations are essential for establishing guidelines on conservation and utilization of the genetic resources of a species, and more particularly when biotic and abiotic stresses are considered. The aim of this study was to assess the extent and pattern of genetic variation in date palm (Phoenix dacttylifera L) cultivars; the genetic diversity and structure in its populations occurring over geographical ranges; the variation in economically and botanically important traits of it and the variation in its drought adaptive traits, in conservation and utilization context. In this study, the genetic diversity and relationships among selected cultivars from Sudan and Morocco were assessed using microsatellite markers. Microsatellite markers were also used to investigate the genetic diversity within and among populations collected from different geographic locations in Sudan. In a separate investigation, fruits of cultivars selected from Sudan, involved morphological and chemical characterization, and morphological and DNA polymorphism of the mother trees were also investigated. Morphological and photosynthetic adjustments to water stress were studied in the five most important date palm cultivars in Sudan, namely, Gondaila, Barakawi, Bitamoda, Khateeb and Laggai; and the mechanism enhancing photosynthetic gas exchange in date palm under water stress was also investigated. Results showed a significant (p < 0.001, t-test) differentiation between Sudan and Morocco groups of cultivars. However, the major feature of all tested cultivars was the complete lack of clustering and the absence of cultivars representing specific clones. The results indicated high genetic as well as compositional and morphological diversity among cultivars; while, compositional and morphological traits were found to be characteristic features that strongly differentiate cultivars as well as phenotypes. High genetic diversity was observed also in different populations. Slight but significant (p < 0.01, AMOVA) divergence was observed for soft and dry types; however, the genetic divergence among populations was relatively weak. The results showed a complex genetic relationships between some of the tested populations especially when isolation by distance was considered. The results of the study also revealed that date palm cultivars and phenotypes possess specific direct or interaction effects due to water availability on a range of morphological and physiological traits. Soft and dry phenotypes responded differently to different levels of water stress, while the dry phenotype was more sensitive and conservative. The results indicated that date palm has high fixation capacity to photosynthetic CO2 supply with interaction effect to water availability, which can be considered as advantageous when coping with stresses that may arise with climate change. In conclusion, although a large amount of diversity exists among date palm germplasm, the findings in this study show that the role of biological nature of the tree, isolation by distance and environmental effects on structuring date palm genome was highly influenced by human impacts. Identity of date palm cultivars as developed and manipulated by date palm growers, in the absence of scientific breeding programmes, may continue to mainly depend on tree morphology and fruit characters. The pattern of genetic differentiation may cover specific morphological and physiological traits that contribute to adaptive mechanisms in each phenotype. These traits can be considered for further studies related to drought adaptation in date palm.
Resumo:
The Caribbean genus Pseudophoenix (Arecaceae) has its center of taxonomic diversity in Hispaniola (Haiti and the Dominican Republic). Three species (P. ekmanii, P. lediniana, and P. vinifera) are restricted to this island. In this thesis I investigated the population genetic diversity and structure of Pseudophoenix using ten microsatellite loci. Results showed homozygote excess and high inbreeding coefficients in all populations across all polymorphic loci. Overall, there was high differentiation among populations. Results from the Bayesian and Neighbor Joining cluster analyses identified groups that were consistence with currently accepted species delimitation. We included the only known population of an undescribed morph from the Dominican Republic that has been suggested to represent a new species. Results from the cluster analyses suggested that this putative species is closely related to P. sargentii from Turk and Caicos. Our study provided insights pertinent to the conservation genetics and management of this genus in Hispaniola.
Resumo:
The fleshy shrimp, Fenneropenaeus chinensis, is the family of Penaeidae and one of the most economically important marine culture species in Korea. However, its genetic characteristics have never been studied. In this study, a total of 240 wild F. chinensis individuals were collected from four locations as follows: Narodo (NRD, n = 60), Beopseongpo (BSP, n = 60), Chaesukpo (CSP, n = 60), and Cheonsuman (CSM, n = 60). Genetic variability and the relationships among four wild F. chinensis populations were analyzed using 13 newly developed microsatellite loci. Relatively high levels of genetic variability (mean allelic richness = 16.87; mean heterozygosity = 0.845) were found among localities. Among the 52 population loci, 13 showed significant deviation from the Hardy–Weinberg equilibrium. Neighbor-joining, principal coordinate, and molecular variance analyses revealed the presence of three subpopulations (NRD, CSM, BSP and CSP), which was consistent with clustering based on genetic distance. The mean observed heterozygosity values of the NRD, CSM, BSP, and CSP populations were 0.724, 0.821, 0.814, and 0.785 over all loci, respectively. These genetic variability and differentiation results of the four wild populations can be applied for future genetic improvement using selective breeding and to design suitable management guidelines for Korean F. chinensis culture.
Resumo:
To characterize the origin, genetic diversity, and phylogeographic structure of Chinese domestic sheep, we here analyzed a 531-bp fragment of mtDNA control region of 449 Chinese autochthonous sheep from 19 breeds/populations from 13 geographic regions, to
Resumo:
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai-Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi.2. Nucleotide diversities (pi) were moderate (0.0024-0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018-0.0021) in populations from Qiadam Basin. It is probable that the low intra-population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history.3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise F-ST tests were significant, with non-significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north-west of the Qinghai-Tibetan Plateau. Analysis of molecular variance (AMOVA) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems.4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai-Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations.5. The significantly large negative F-s-value (-24.91, P < 0.01) of Fu's F-s-test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement.6. The results of this study indicate that each population from the Qinghai-Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.
Resumo:
Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Townsend’s big-eared bat, Corynorhinus townsendii, is distributed broadly across western North America and in two isolated, endangered populations in central and eastern United States. There are five subspecies of C. townsendii; C. t. pallescens, C. t. australis, C. t. townsendii, C. t. ingens, and C. t. virginianus with varying degrees of concern over the conservation status of each. The aim of this study was to use mitochondrial and microsatellite DNA data to examine genetic diversity, population differentiation, and dispersal of three C. townsendii subspecies. C. t. virginianus is found in isolated populations in the eastern United States and was listed as endangered under the Endangered Species Act in 1979. Concern also exists about declining populations of two western subspecies, C. t. pallescens and C. t. townsendii. Using a comparative approach, estimates of the genetic diversity within populations of the endangered subspecies, C. t. virginianus, were found to be significantly lower than within populations of the two western subspecies. Further, both classes of molecular markers revealed significant differentiation among regional populations of C. t. virginianus with most genetic diversity distributed among populations. Genetic diversity was not significantly different between C. t. townsendii and C. t. pallescens. Some populations of C. t. townsendii are not genetically differentiated from populations of C. t. pallescens in areas of sympatry. For the western subspecies gene flow appears to occur primarily through male dispersal. Finally, geographic regions representing significantly differentiated and genetically unique populations of C. townsendii virginianus are recognized as distinct evolutionary significant units.