999 resultados para Genetic Hemochromatosis
Resumo:
The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE.
Resumo:
Background and aims: In HFE associated hereditary haemochromatosis, the duodenal enterocyte behaves as if iron deficient and previous reports have shown increased duodenal expression of divalent metal transporter 1 (DMT1) and iron regulated gene 1 (Ireg1) in affected subjects. In those studies, many patients had undergone venesection, which is a potent stimulus of iron absorption. Our study investigated duodenal expression of DMT1 ( IRE and non-IRE), Ireg1, hephaestin, and duodenal cytochrome-b (Dyctb) in untreated C282Y homozygous haemochromatosis patients, iron deficient patients, and iron replete subjects. Methods: Total RNA was extracted from duodenal biopsies and expression of the iron transport genes was assessed by ribonuclease protection assay. Results: Expression of DMT1 ( IRE) and Ireg1 was increased 3 - 5-fold in iron deficient subjects compared with iron replete subjects. Duodenal expression of DMT1 ( IRE) and Ireg1 was similar in haemochromatosis patients and iron replete subjects but in haemochromatosis patients with elevated serum ferritin concentrations, both DMT1 ( IRE) and Ireg1 expression were inappropriately increased relative to serum ferritin concentration. Hephaestin and Dcytb levels were not upregulated in haemochromatosis. DMT1 ( IRE) and Ireg1 levels showed significant inverse correlations with serum ferritin concentration in each group of patients. Conclusions: These findings are consistent with DMT1 ( IRE) and Ireg1 playing primary roles in the adaptive response to iron deficiency. Untreated haemochromatosis patients showed inappropriate increases in DMT1 ( IRE) and Ireg1 expression for a given level of serum ferritin concentration, although the actual level of expression of these iron transport genes was not significantly different from that of normal subjects.
Resumo:
Variation in body iron is associated with or causes diseases, including anaemia and iron overload. Here, we analyse genetic association data on biochemical markers of iron status from 11 European-population studies, with replication in eight additional cohorts (total up to 48,972 subjects). We find 11 genome-wide-significant (P<5 × 10−8) loci, some including known iron-related genes (HFE, SLC40A1, TF, TFR2, TFRC, TMPRSS6) and others novel (ABO, ARNTL, FADS2, NAT2, TEX14). SNPs at ARNTL, TF, and TFR2 affect iron markers in HFE C282Y homozygotes at risk for hemochromatosis. There is substantial overlap between our iron loci and loci affecting erythrocyte and lipid phenotypes. These results will facilitate investigation of the roles of iron in disease.
Resumo:
Hereditary haemochromatosis (HH) is the most common lethal monogenic human disease, affecting roughly 1 in 300 white northern Europeans. Homozygosity for the C282Y polymorphism within the HFE gene causes more than 80% of cases, with compound heterozygosity of the C282Y and H63D polymorphism also increasing susceptibility to disease. The aim of this study was to determine the frequency of the C282Y and H63D polymorphisms in the disease, and to assess the risk of HH in heterozygotes for the C282Y polymorphism. 128 patients were recruited because of either radiographic chondrocalcinosis (at least bicompartmental knee disease or joints other than the knee involved) or CPPD pseudogout. Genotyping of the HFE C282Y and H63D mutations was performed using PCR/SSP and genotypes for the C282Y polymorphism confirmed by PCR/RFLP. Historical white European control data were used for comparison. Two previously undiagnosed C282Y homozygotes (1.6%), and 16 C282Y heterozygotes (12.5%), including four (3.1%) C282Y/ H63D compound heterozygotes were identified. This represents a significant overrepresentation of C282Y homozygotes (relative risk 3.4, p-0.037), but the number of heterozygotes was not significantly increased. At a cost per test of £1 for each subject, screening all patients with chondrocalcinosis using the above ascertainment criteria costs only £64 for each case of haemochromatosis identified, clearly a highly cost effective test given the early mortality associated with untreated haemochromatosis. Routine screening for haemochromatosis in patients with appreciable chondrocatcinosis is recommended.
Resumo:
Genome-wide association studies (GWAS) have revealed genetic determinants of iron metabolism, but correlation of these with clinical phenotypes is pending. Homozygosity for HFE C282Y is the predominant genetic risk factor for hereditary hemochromatosis (HH) and may cause liver cirrhosis. However, this genotype has a low penetrance. Thus, detection of yet unknown genetic markers that identify patients at risk of developing severe liver disease is necessary for better prevention. Genetic loci associated with iron metabolism (TF, TMPRSS6, PCSK7, TFR2 and Chr2p14) in recent GWAS and liver fibrosis (PNPLA3) in recent meta-analysis were analyzed for association with either liver cirrhosis or advanced fibrosis in 148 German HFE C282Y homozygotes. Replication of associations was sought in additional 499 Austrian/Swiss and 112 HFE C282Y homozygotes from Sweden. Only variant rs236918 in the PCSK7 gene (proprotein convertase subtilisin/kexin type 7) was associated with cirrhosis or advanced fibrosis (P = 1.02 × 10(-5)) in the German cohort with genotypic odds ratios of 3.56 (95% CI 1.29-9.77) for CG heterozygotes and 5.38 (95% CI 2.39-12.10) for C allele carriers. Association between rs236918 and cirrhosis was confirmed in Austrian/Swiss HFE C282Y homozygotes (P = 0.014; ORallelic = 1.82 (95% CI 1.12-2.95) but not in Swedish patients. Post hoc combined analyses of German/Swiss/Austrian patients with available liver histology (N = 244, P = 0.00014, ORallelic = 2.84) and of males only (N = 431, P = 2.17 × 10(-5), ORallelic = 2.54) were consistent with the premier finding. Association between rs236918 and cirrhosis was not confirmed in alcoholic cirrhotics, suggesting specificity of this genetic risk factor for HH. PCSK7 variant rs236918 is a risk factor for cirrhosis in HH patients homozygous for the HFE C282Y mutation.
Resumo:
Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.
Resumo:
Objective: In Southern European countries up to one-third of the patients with hereditary hemochromatosis (HH) do not present the common HFE risk genotype. In order to investigate the molecular basis of these cases we have designed a gene panel for rapid and simultaneous analysis of 6 HH-related genes (HFE, TFR2, HJV, HAMP, SLC40A1 and FTL) by next-generation sequencing (NGS). Materials and Methods: Eighty-eight iron overload Portuguese patients, negative for the common HFE mutations, were analysed. A TruSeq Custom Amplicon kit (TSCA, by Illumina) was designed in order to generate 97 amplicons covering exons, intron/exon junctions and UTRs of the mentioned genes with a cumulative target sequence of 12115bp. Amplicons were sequenced in the MiSeq instrument (IIlumina) using 250bp paired-end reads. Sequences were aligned against human genome reference hg19 using alignment and variant caller algorithms in the MiSeq reporter software. Novel variants were validated by Sanger sequencing and their pathogenic significance were assessed by in silico studies. Results: We found a total of 55 different genetic variants. These include novel pathogenic missense and splicing variants (in HFE and TFR2), a very rare variant in IRE of FTL, a variant that originates a novel translation initiation codon in the HAMP gene, among others. Conclusion: The merging of TSCA methodology and NGS technology appears to be an appropriate tool for simultaneous and fast analysis of HH-related genes in a large number of samples. However, establishing the clinical relevance of NGS-detected variants for HH development remains a hard-working task, requiring further functional studies.
Resumo:
The close association of excessive alcohol consumption and clinical expression of hemochromatosis has been of widespread interest for many years. In most populations of northern European extraction, more than 90% of patients with overt hemochromatosis are homozygous for the C282Y mutation in the HFE gene. Nevertheless, the strong association of heavy alcohol intake with the clinical expression of hemochromatosis remains. We (individually or in association with colleagues from our laboratories) have performed three relevant studies in which this association was explored. In the first, performed in 1975 before the cloning of the HFE gene, the frequency of clinical symptoms and signs was compared in patients with classical hemochromatosis who consumed 100 g or more of alcohol per day versus in nondrinkers or moderate drinkers who consumed less than 100 g of alcohol per day. The results showed no difference between the two groups except for features of complications of alcoholism in the first group, especially jaundice, peripheral neuritis, and hepatic failure. Twenty-five percent of those with heavy alcohol consumption showed histologic features of alcoholic liver disease (including cirrhosis) together with heavy iron overload. It was concluded that these patients had the genetic disease complicated by alcoholic liver disease. In the second study (2002), 206 subjects with classical HFE-associated hemochromatosis in whom liver biopsy had been performed were evaluated to quantify the contribution of excess alcohol consumption to the development of cirrhosis in hemochromatosis. Cirrhosis was approximately nine times more likely to develop in subjects with hemochromatosis who consumed more than 60 g of alcohol per day than in those who drank less than this amount. In the third study (2002), 371 C282Y-homozygous relatives of patients with HFE-associated hemochromatosis were assessed. Eleven subjects had cirrhosis on liver biopsy and four of these drank 60 g or more of alcohol per day. The reason why heavy alcohol consumption accentuates the clinical expression of hemochromatosis is unclear. Increased dietary iron or increased iron absorption is unlikely. The most likely explanation would seem to be the added co-factor effect of iron and alcohol, both of which cause oxidative stress, hepatic stellate cell activation, and hepatic fibrogenesis. In addition, the cumulative effects of other forms of liver injury may result when iron and alcohol are present concurrently. Clearly, the addition of dietary iron in subjects homozygous for hemochromatosis would be unwise. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Resumo:
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1GNC)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5′-UTR of HAMP gene(c.-25GNA). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.