995 resultados para Genes, Lethal
Resumo:
The putative eukaryotic translation initiation factor 5A (eIF5A) is an essential protein for cell viability and the only cellular protein known to contain the unusual amino acid residue hypusine. eIF5A has been implicated in translation initiation, cell proliferation, nucleocytoplasmic transport, mRNA decay, and actin polarization, but the precise biological function of this protein is not clear. However, eIF5A was recently shown to be directly involved with the translational machinery. A screen for synthetic lethal mutations was carried out with one of the temperature-sensitive alleles of TIF51A (tif51A-3) to identify factors that functionally interact with eIF5A and revealed the essential gene YPT1. This gene encodes a small GTPase, a member of the rab family involved with secretion, acting in the vesicular trafficking between endoplasmatic reticulum and the Golgi. Thus, the synthetic lethality between TIF51A and YPT1 may reveal the connection between translation and the polarized distribution of membrane components, suggesting that these proteins work together in the cell to guarantee proper protein synthesis and secretion necessary for correct bud formation during G1/ S transition. Future studies will investigate the functional interaction between eIF5A and Ypt1 in order to clarify this involvement of eIF5A with vesicular trafficking. ©FUNPEC-RP.
Resumo:
BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression.
Resumo:
We have screened for temperature-sensitive (ts) fission yeast mutants with altered polarity (alp1–15). Genetic analysis indicates that alp2 is allelic to atb2 (one of two α-tubulin genes) and alp12 to nda3 (the single β-tubulin gene). atb2+ is nonessential, and the ts atb2 mutations we have isolated are dominant as expected. We sequenced two alleles of ts atb2 and one allele of ts nda3. In the ts atb2 mutants, the mutated residues (G246D and C356Y) are found at the longitudinal interface between α/β-heterodimers, whereas in ts nda3 the mutated residue (Y422H) is situated in the domain located on the outer surface of the microtubule. The ts nda3 mutant is highly sensitive to altered gene dosage of atb2+; overexpression of atb2+ lowers the restrictive temperature, and, conversely, deletion rescues ts. Phenotypic analysis shows that contrary to undergoing mitotic arrest with high viability via the spindle assembly checkpoint as expected, ts nda3 mutants execute cytokinesis and septation and lose viability. Therefore, it appears that the ts nda3 mutant becomes temperature lethal because of irreversible progression through the cell cycle in the absence of activating the spindle assembly checkpoint pathway.
Resumo:
Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.
Resumo:
We studied the effect on female viability of trans-heterozygous combinations of X-chromosome deficiencies and Sxt-(fl), a null allele of Sex-lethal. Twentyfive deficiencies, which together covered 80% of the X chromosome, were tested. Seven of these trans-heterozygous combinations caused significant levels of female lethality. Two of the seven interacting deficiencies include the previously known sex determination genes sans fille and sisterless-a. Four of the remaining uncover X-chromosomal regions that were not hitherto known to contain sex determination genes. These newly identified regions are defined by deficiencies Df(1)RA2 (7D10; 8A4-5), Df(1)KA14 (7F1-2; 8C6), Df(1)C52 (8E; 9C-D) and Df(1)N19 (17A1; 18A2). These four deficiencies were characterized further to determine whether it was the maternal or zygotic dosage that was primarily responsible for the observed lethality of female embryos, daughterless and extra macrochaetae, two known regulators of Sxl, influence the interaction of these deficiencies with Sxl.
Resumo:
Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.
Resumo:
Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.
Resumo:
BACKGROUND: We previously identified a panel of genes associated with outcome of ovarian cancer. The purpose of the current study was to assess whether variants in these genes correlated with ovarian cancer risk. METHODS AND FINDINGS: Women with and without invasive ovarian cancer (749 cases, 1,041 controls) were genotyped at 136 single nucleotide polymorphisms (SNPs) within 13 candidate genes. Risk was estimated for each SNP and for overall variation within each gene. At the gene-level, variation within MSL1 (male-specific lethal-1 homolog) was associated with risk of serous cancer (p = 0.03); haplotypes within PRPF31 (PRP31 pre-mRNA processing factor 31 homolog) were associated with risk of invasive disease (p = 0.03). MSL1 rs7211770 was associated with decreased risk of serous disease (OR 0.81, 95% CI 0.66-0.98; p = 0.03). SNPs in MFSD7, BTN3A3, ZNF200, PTPRS, and CCND1A were inversely associated with risk (p<0.05), and there was increased risk at HEXIM1 rs1053578 (p = 0.04, OR 1.40, 95% CI 1.02-1.91). CONCLUSIONS: Tumor studies can reveal novel genes worthy of follow-up for cancer susceptibility. Here, we found that inherited markers in the gene encoding MSL1, part of a complex that modifies the histone H4, may decrease risk of invasive serous ovarian cancer.
Resumo:
Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.
Resumo:
Background Moraxella catarrhalis, a major nasopharyngeal pathogen of the human respiratory tract, is exposed to rapid downshifts of environmental temperature when humans breathe cold air. It was previously shown that the prevalence of pharyngeal colonization and respiratory tract infections caused by M. catarrhalis are greatest in winter. The aim of this study was to investigate how M. catarrhalis uses the physiologic exposure to cold air to upregulate pivotal survival systems in the pharynx that may contribute to M. catarrhalis virulence. Results A 26°C cold shock induces the expression of genes involved in transferrin and lactoferrin acquisition, and enhances binding of these proteins on the surface of M. catarrhalis. Exposure of M. catarrhalis to 26°C upregulates the expression of UspA2, a major outer membrane protein involved in serum resistance, leading to improved binding of vitronectin which neutralizes the lethal effect of human complement. In contrast, cold shock decreases the expression of Hemagglutinin, a major adhesin, which mediates B cell response, and reduces immunoglobulin D-binding on the surface of M. catarrhalis. Conclusion Cold shock of M. catarrhalis induces the expression of genes involved in iron acquisition, serum resistance and immune evasion. Thus, cold shock at a physiologically relevant temperature of 26°C induces in M. catarrhalis a complex of adaptive mechanisms that enables the bacterium to target their host cellular receptors or soluble effectors and may contribute to enhanced growth, colonization and virulence.
Resumo:
The cause of porcine congenital progressive ataxia and spastic paresis (CPA) is unknown. This severe neuropathy manifests shortly after birth and is lethal. The disease is inherited as a single autosomal recessive allele, designated cpa. In a previous study, we demonstrated close linkage of cpa to microsatellite SW902 on porcine chromosome 3 (SSC3), which corresponds syntenically to human chromosome 2. This latter chromosome contains ion channel genes (Ca(2+), K(+) and Na(+)), a cholinergic receptor gene and the spastin (SPG4) gene, which cause human epilepsy and ataxia when mutated. We mapped porcine CACNB4, KCNJ3, SCN2A and CHRNA1 to SSC15 and SPG4 to SSC3 with the INRA-Minnesota porcine radiation hybrid panel (IMpRH) and we sequenced the entire open reading frames of CACNB4 and SPG4 without finding any differences between healthy and affected piglets. An anti-epileptic drug treatment with ethosuximide did not change the severity of the disease, and pigs with CPA did not exhibit the corticospinal tract axonal degeneration found in humans suffering from hereditary spastic paraplegia, which is associated with mutations in SPG4. For all these reasons, the hypothesis that CACNB4, CHRNA1, KCNJ3, SCN2A or SPG4 are identical with the CPA gene was rejected.
Resumo:
CONTEXT: Thyroid transcription factor 1 (TITF1/NKX2.1) is expressed in the thyroid, lung, ventral forebrain, and pituitary. In the lung, TITF1/NKX2.1 activates the expression of genes critical for lung development and function. Titf/Nkx2.1(-/-) mice have pituitary and thyroid aplasia but also impairment of pulmonary branching. Humans with heterozygous TITF1/NKX2.1 mutations present with various combinations of primary hypothyroidism, respiratory distress, and neurological disorders. OBJECTIVE: The objective of the study was to report clinical and molecular studies of the first patient with lethal neonatal respiratory distress from a novel heterozygous TITF1/NKX2.1 mutation. Participant: This girl, the first child of healthy nonconsanguineous French-Canadian parents, was born at 41 wk. Birth weight was 3,460 g and Apgar scores were normal. Soon after birth, she developed acute respiratory failure with pulmonary hypertension. At neonatal screening on the second day of life, TSH was 31 mU/liter (N <15) and total T(4) 245 nmol/liter (N = 120-350). Despite mechanical ventilation, thyroxine, surfactant, and pulmonary vasodilators, the patient died on the 40th day. RESULTS: Histopathology revealed pulmonary tissue with low alveolar counts. The thyroid was normal. Sequencing of the patient's lymphocyte DNA revealed a novel heterozygous TITF1/NKX2.1 mutation (I207F). This mutation was not found in either parent. In vitro, the mutant TITF-1 had reduced DNA binding and transactivation capacity. CONCLUSION: This is the first reported case of a heterozygous TITF1/NKX2.1 mutation leading to neonatal death from respiratory failure. The association of severe unexplained respiratory distress in a term neonate with mild primary hypothyroidism is the clue that led to the diagnosis.
Resumo:
OBJECTIVES The aim of this study was to provide the spectrum and prevalence of mutations in the 12 Brugada syndrome (BrS)-susceptibility genes discovered to date in a single large cohort of unrelated BrS patients. BACKGROUND BrS is a potentially lethal heritable arrhythmia syndrome diagnosed electrocardiographically by coved-type ST-segment elevation in the right precordial leads (V1 to V3; type 1 Brugada electrocardiographic [ECG] pattern) and the presence of a personal/family history of cardiac events. METHODS Using polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing, comprehensive mutational analysis of BrS1- through BrS12-susceptibility genes was performed in 129 unrelated patients with possible/probable BrS (46 with clinically diagnosed BrS [ECG pattern plus personal/family history of a cardiac event] and 83 with a type 1 BrS ECG pattern only). RESULTS Overall, 27 patients (21%) had a putative pathogenic mutation, absent in 1,400 Caucasian reference alleles, including 21 patients with an SCN5A mutation, 2 with a CACNB2B mutation, and 1 each with a KCNJ8 mutation, a KCND3 mutation, an SCN1Bb mutation, and an HCN4 mutation. The overall mutation yield was 23% in the type 1 BrS ECG pattern-only patients versus 17% in the clinically diagnosed BrS patients and was significantly greater among young men<20 years of age with clinically diagnosed BrS and among patients who had a prolonged PQ interval. CONCLUSIONS We identified putative pathogenic mutations in ∼20% of our BrS cohort, with BrS genes 2 through 12 accounting for <5%. Importantly, the yield was similar between patients with only a type 1 BrS ECG pattern and those with clinically established BrS. The yield approaches 40% for SCN5A-mediated BrS (BrS1) when the PQ interval exceeds 200 ms. Calcium channel-mediated BrS is extremely unlikely in the absence of a short QT interval.
Resumo:
Phospholipids are the major component of cellular membranes. In addition to its structural role, phospholipids play an active and diverse role in cellular processes. The goal of this study is to identify the genes involved in phospholipid biosynthesis in a model eukaryotic system, Saccharomyces cerevisiae. We have focused on the biosynthetic steps localized in the inner mitochondrial membrane; hence, the identification of the genes encoding phosphatidylserine decarboxylase (PSD1), cardiolipin synthase (CLS1), and phosphatidylglycerophosphate synthase (PGS1).^ The PSD1 gene encoding a phosphatidylserine decarboxylase was cloned by complementation of a conditional lethal mutation in the homologous gene in Escherichia coli strain EH150. Overexpression of the PSD1 gene in wild type yeast resulted in 20-fold amplification of phosphatidylserine decarboxylase activity. Disruption of the PSD1 gene resulted in 20-fold reduction of decarboxylase activity, but the PSD1 null mutant exhibited essentially normal phenotype. These results suggest that yeast has a second phosphatidylserine decarboxylation activity.^ Cardiolipin is the major anionic phospholipid of the inner mitochondrial membrane. It is thought to be an essential component of many biochemical functions. In eukaryotic cells, cardiolipin synthase catalyzes the final step in the synthesis of cardiolipin from phosphatidylglycerol and CDP-diacylglycerol. We have cloned the gene CLS1. Overexpression of the CLS1 gene product resulted in significantly elevated cardiolipin synthase activity, and disruption of the CLS1 gene, confirmed by PCR and Southern blot analysis, resulted in a null mutant that was viable and showed no petite phenotype. However, phospholipid analysis showed undetectable cardiolipin level and an accumulation of phosphatidylglycerol. These results support the conclusion that CLS1 encodes the cardiolipin synthase of yeast and that normal levels of cardiolipin are not absolutely essential for survival of the cell.^ Phosphatidylglycerophosphate (PGP) synthase catalyzes the synthesis of PGP from CDP-diacylglycerol and glycerol-3-phosphate and functions as the committal and rate limiting step in the biosynthesis of cardiolipin. We have identified the PGS1 gene as encoding the PGP synthase. Overexpression of the PGS1 gene product resulted in over 15-fold increase in in vitro PGP synthase activity. Disruption of the PGS1 gene in a haploid strain of yeast, confirmed by Southern blot analysis, resulted in a null mutant strain that was viable but had significantly altered phenotypes, i.e. inability to grow on glycerol and at $37\sp\circ$C. These cells showed over a 10-fold decrease in PGP synthase activity and a decrease in both phosphatidylglycerol and cardiolipin levels. These results support the conclusion that PGS1 encodes the PGP synthase of yeast and that neither phosphatidylglycerol nor cardiolipin are absolutely essential for survival of the cell. ^
Resumo:
The mechanisms responsible for the determination of phenotypes are still not well understood; however, it has become apparent that modifier genes must play a considerable role in the phenotypic heterogeneity of Mendelian disorders. Significant advances in genetic technologies and molecular medicine allow huge amounts of information to be generated from individual samples within a reasonable time frame. This review focuses on the role of modifier genes using the example of cystic fibrosis, the most common lethal autosomal recessive disorder in the white population, and discusses the advantages and limitations of candidate gene approaches versus genome-wide association studies. Moreover, the implications of modifier gene research for other monogenic disorders, as well as its significance for diagnostic, prognostic, and therapeutic approaches are summarized. Increasing insight into modifying mechanisms opens up new perspectives, dispelling the idea of genetic disorders being caused by one single gene.