974 resultados para Generators themes
Resumo:
Science application has faced problems in the process of training and cognizant thinking subjects in their actions. Thus, this work is justified in order to reorganize the contents of this area of knowledge. Thus, the research entitled "Plantation School: generating themes and teaching moments in teaching of science" was developed with a group of 6th grade of elementary school, from the planting of vegetables in tires without usefulness, with purpose of building meanings and scientific concepts to students. This work was based on sociointeractionist perspective of Vygotsky (1996, 1998), education for thematic research Freire (1983, 1996) as well as in problem-solving situations identified by the methodology of Pedagogical Moments Delizoicov and Angoti (1992; 2002 ) which together corroborated for the construction of a proposed teaching and learning, curriculum reorganization and significance of scientific concepts. Thus, the project breaks in practice with the linearity of the contents, to develop and analyze themes mediated by pedagogical moments, in order to ascertain the contribution of this methodological resource for the teacher's work, with regard to the understanding of scientific concepts by students. Thus, lesson plans were built based on the study situation "Horta School" and Themes Generators "human interaction with the environment", "photosynthesis", "Ecology and Nutrition of living beings", culminating in the work proposal developed in the classroom. From these themes, the contents were worked through pedagogical moments, which are organized into three stages: questioning, organization / systematization of knowledge and application / contextualization of knowledge. Thus, within each Theme Generator activities were planned which resulted in the involvement of students in learning scientific concepts, such as the issue of sustainability, environmental pollution, nutrition of living beings and the decomposition of organic matter. This work led and motivated student participation in Themes generators, and allows greater interaction between teacher-student and student among his peers, through dialogism established in the classroom, which promoted a more meaningful learning for students.
Resumo:
In the last 15 years, the use of doubly fed induction machines in modern variable-speed wind turbines has increased rapidly. This development has been driven by the cost reduction as well as the low-loss generation of Insulated Gate Bipolar Transistors (IGBT). According to new grid code requirements, wind turbines must remain connected to the grid during grid disturbances. Moreover, they must also contribute to voltage support during and after grid faults. The crowbar system is essential to avoid the disconnection of the doubly fed induction wind generators from the network during faults. The insertion of the crowbar in the rotor circuits for a short period of time enables a more efficient terminal voltage control. As a general rule, the activation and the deactivation of the crowbar system is based only on the DC-link voltage level of the back-to-back converters. In this context, the authors discuss the critical rotor speed to analyze the instability of doubly fed induction generators during grid faults.
Resumo:
Let A be an iterated tilted algebra. We will construct an Auslander generator M in order to show that the representation dimension of A is three in case A is representation infinite.
Resumo:
The combined-cycle gas and steam turbine power plant presents three main pieces of equipment: gas turbines, steam turbines and heat recovery steam generator (HRSG). In case of HRSG failure the steam cycle is shut down, reducing the power plant output. Considering that the technology for design, construction and operation of high capacity HRSGs is quite recent its availability should be carefully evaluated in order to foresee the performance of the power plant. This study presents a method for reliability and availability evaluation of HRSGs installed in combined-cycle power plant. The method`s first step consists in the elaboration of the steam generator functional tree and development of failure mode and effects analysis. The next step involves a reliability and availability analysis based on the time to failure and time to repair data recorded during the steam generator operation. The third step, aiming at availability improvement, recommends the fault-tree analysis development to identify components the failure (or combination of failures) of which can cause the HRSG shutdown. Those components maintenance policy can be improved through the use of reliability centered maintenance (RCM) concepts. The method is applied on the analysis of two HRSGs installed in a 500 MW combined-cycle power plant. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons.
Resumo:
This is the second in a series of articles whose ultimate goal is the evaluation of the matrix elements (MEs) of the U(2n) generators in a multishell spin-orbit basis. This extends the existing unitary group approach to spin-dependent configuration interaction (CI) and many-body perturbation theory calculations on molecules to systems where there is a natural partitioning of the electronic orbital space. As a necessary preliminary to obtaining the U(2n) generator MEs in a multishell spin-orbit basis, we must obtain a complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The zero-shift coefficients were obtained in the first article of the series. in this article, we evaluate the nonzero shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. We then demonstrate that the one-shell versions of these coefficients may be obtained by taking the Gelfand-Tsetlin limit of the two-shell formulas. These coefficients,together with the zero-shift types, then enable us to write down formulas for the U(2n) generator matrix elements in a two-shell spin-orbit basis. Ultimately, the results of the series may be used to determine the many-electron density matrices for a partitioned system. (C) 1998 John Wiley & Sons, Inc.
Resumo:
This is the third and final article in a series directed toward the evaluation of the U(2n) generator matrix elements (MEs) in a multishell spin/orbit basis. Such a basis is required for many-electron systems possessing a partitioned orbital space and where spin-dependence is important. The approach taken is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. A complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis (which is appropriate to the many-electron problem) were obtained in the first and second articles of this series. Ln the first article we defined zero-shift coupling coefficients. These are proportional to the corresponding two-shell del-operator matrix elements. See P. J. Burton and and M. D. Gould, J. Chem. Phys., 104, 5112 (1996), for a discussion of the del-operator and its properties. Ln the second article of the series, the nonzero shift coupling coefficients were derived. Having obtained all the necessary coefficients, we now apply the formalism developed above to obtain the U(2n) generator MEs in a multishell spin-orbit basis. The methods used are based on the work of Gould et al. (see the above reference). (C) 1998 John Wiley & Sons, Inc.
Resumo:
University teaching is a diverse enterprise which encompasses a range of disciplines, cirricula, teaching methods, learning tasks and learning approaches. Within this diversity, common themes and issues which reflect academics' understanding of effective teaching may be discerned. Drawing on written data collected from 708 practising teachers who were nominated by their Heads or Deans as exhibiting exemplary teaching practice, and from interviews conducted with 44 of these, a number of these themes and issues are identified and illustrated The findings offer insights which may stimulate further reflection on, and discussion of, the quality of teaching in higher education.