909 resultados para Generative Representations
Resumo:
As the complexity of evolutionary design problems grow, so too must the quality of solutions scale to that complexity. In this research, we develop a genetic programming system with individuals encoded as tree-based generative representations to address scalability. This system is capable of multi-objective evaluation using a ranked sum scoring strategy. We examine Hornby's features and measures of modularity, reuse and hierarchy in evolutionary design problems. Experiments are carried out, using the system to generate three-dimensional forms, and analyses of feature characteristics such as modularity, reuse and hierarchy were performed. This work expands on that of Hornby's, by examining a new and more difficult problem domain. The results from these experiments show that individuals encoded with those three features performed best overall. It is also seen, that the measures of complexity conform to the results of Hornby. Moving forward with only this best performing encoding, the system was applied to the generation of three-dimensional external building architecture. One objective considered was passive solar performance, in which the system was challenged with generating forms that optimize exposure to the Sun. The results from these and other experiments satisfied the requirements. The system was shown to scale well to the architectural problems studied.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
This study contributes to a central debate within contemporary generative second language (L2) theorizing: the extent to which adult learners are (un)able to acquire new functional features that result in a L2 grammar that is mentally structured like the native target (see White, 2003). The adult acquisition of L2 nominal phi-features is explored, with focus on the syntactic and semantic reflexes in the related domain of adjective placement in two experimental groups: English-speaking intermediate (n = 21) and advanced (n = 24) learners of Spanish, as compared to a native-speaker control group (n = 15). Results show that, on some of the tasks, the intermediate L2 learners appear to have acquired the syntactic properties of the Spanish determiner phrase but, on other tasks, to show some delay with the semantic reflexes of prenominal and postnominal adjectives. Crucially, however, our data demonstrate full convergence by all advanced learners and thus provide evidence in contra the predictions of representational deficit accounts (e.g., Hawkins & Chan, 1997; Hawkins & Franceschina, 2004; Hawkins & Hattori, 2006).
Resumo:
We create and study a generative model for Irish traditional music based on Variational Autoencoders and analyze the learned latent space trying to find musically significant correlations in the latent codes' distributions in order to perform musical analysis on data. We train two kinds of models: one trained on a dataset of Irish folk melodies, one trained on bars extrapolated from the melodies dataset, each one in five variations of increasing size. We conduct the following experiments: we inspect the latent space of tunes and bars in relation to key, time signature, and estimated harmonic function of bars; we search for links between tunes in a particular style (i.e. "reels'") and their positioning in latent space relative to other tunes; we compute distances between embedded bars in a tune to gain insight into the model's understanding of the similarity between bars. Finally, we show and evaluate generative examples. We find that the learned latent space does not explicitly encode musical information and is thus unusable for musical analysis of data, while generative results are generally good and not strictly dependent on the musical coherence of the model's internal representation.
Resumo:
Diabetic Retinopathy (DR) is a complication of diabetes that can lead to blindness if not readily discovered. Automated screening algorithms have the potential to improve identification of patients who need further medical attention. However, the identification of lesions must be accurate to be useful for clinical application. The bag-of-visual-words (BoVW) algorithm employs a maximum-margin classifier in a flexible framework that is able to detect the most common DR-related lesions such as microaneurysms, cotton-wool spots and hard exudates. BoVW allows to bypass the need for pre- and post-processing of the retinographic images, as well as the need of specific ad hoc techniques for identification of each type of lesion. An extensive evaluation of the BoVW model, using three large retinograph datasets (DR1, DR2 and Messidor) with different resolution and collected by different healthcare personnel, was performed. The results demonstrate that the BoVW classification approach can identify different lesions within an image without having to utilize different algorithms for each lesion reducing processing time and providing a more flexible diagnostic system. Our BoVW scheme is based on sparse low-level feature detection with a Speeded-Up Robust Features (SURF) local descriptor, and mid-level features based on semi-soft coding with max pooling. The best BoVW representation for retinal image classification was an area under the receiver operating characteristic curve (AUC-ROC) of 97.8% (exudates) and 93.5% (red lesions), applying a cross-dataset validation protocol. To assess the accuracy for detecting cases that require referral within one year, the sparse extraction technique associated with semi-soft coding and max pooling obtained an AUC of 94.2 ± 2.0%, outperforming current methods. Those results indicate that, for retinal image classification tasks in clinical practice, BoVW is equal and, in some instances, surpasses results obtained using dense detection (widely believed to be the best choice in many vision problems) for the low-level descriptors.
Resumo:
This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).
Resumo:
This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result provides necessary and sufficient conditions for the existence of a local classical state space representation with input v. These conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of differential flatness of nonlinear systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This article analyses the teacher strikes that took place in the state of Sao Paulo ( Brazil). These strikes produced new representations of the profession and gave a particular visibility to its interest aggregation processes. These same strikes appeared as major incentives for the organisation of teachers in Brazil. The October 1963 strike - about six months before the military coup of 1964 - was the first to mobilise the whole of the teaching profession of the Sao Paulo state: primary and secondary education, public and private schools were all involved. The two other strikes, organised by teachers in the public schools in 1978 and 1979, took place under the dictatorship. As such, they had a particular significance in the process of recovering civil liberties in the final stages of the military regime in the 1980s. This article is based on an analysis of the front-page covering of these teacher strikes by the two major journals of the state, O Estado de S. Paulo and Folha de S. Paulo. With Chartier`s concept collective representations in mind, this approach allows us to grasp how large-circulation journals diffuse images of the profession and its organisational configurations. These press pictures are analysed by dint of the analytical frame Roland Barthes advanced in the 1960s, i.e. by reading their denoted, connoted and symbolic messages.
Resumo:
P-representation techniques, which have been very successful in quantum optics and in other fields, are also useful for general bosonic quantum-dynamical many-body calculations such as Bose-Einstein condensation. We introduce a representation called the gauge P representation, which greatly widens the range of tractable problems. Our treatment results in an infinite set of possible time evolution equations, depending on arbitrary gauge functions that can be optimized for a given quantum system. In some cases, previous methods can give erroneous results, due to the usual assumption of vanishing boundary conditions being invalid for those particular systems. Solutions are given to this boundary-term problem for all the cases where it is known to occur: two-photon absorption and the single-mode laser. We also provide some brief guidelines on how to apply the stochastic gauge method to other systems in general, quantify the freedom of choice in the resulting equations, and make a comparison to related recent developments.
Resumo:
In the usual formulation of quantum mechanics, groups of automorphisms of quantum states have ray representations by unitary and antiunitary operators on complex Hilbert space, in accordance with Wigner's theorem. In the phase-space formulation, they have real, true unitary representations in the space of square-integrable functions on phase space. Each such phase-space representation is a Weyl–Wigner product of the corresponding Hilbert space representation with its contragredient, and these can be recovered by 'factorizing' the Weyl–Wigner product. However, not every real, unitary representation on phase space corresponds to a group of automorphisms, so not every such representation is in the form of a Weyl–Wigner product and can be factorized. The conditions under which this is possible are examined. Examples are presented.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
Simple techniques are presented for rearrangement of an infinite series in a systematic way such that the convergence of the resulting expression is accelerated. These procedures also allow calculation of required boundary derivatives. Several examples of conduction and diffusion-reaction problems illustrate the methods.
Resumo:
Two studies demonstrate dissociation between children's understanding of pictorial representations (photos and drawings) and mental representations (beliefs). In Study 1, 37 preschoolers were tested on false belief, appearance-reality, false photo, and false drawing tasks. The false picture tasks were significantly easier, and no correlation was found between children's performances on false belief and false picture tasks. Ln Study 2, 30 children who failed a false belief pretest were randomly assigned to 3 training groups: Belief (trained on false belief tasks), Picture (trained on false picture tasks), or Control (trained on number conservation tasks). Training was conducted in 2 sessions over the course of 2 weeks, tasks were presented and feedback was provided. All children were posttested on theory of mind tasks, false picture tasks, and a number conservation task. The posttest results showed differential patterns of performance, with the Belief group scoring highest on the theory of mind posttests, the Picture group scoring highest on the false picture posttests, and the Control group scoring highest on the number conservation posttest. Results are discussed with respect to competing models of theory of mind development.
Resumo:
We study the level-one irreducible highest weight representations of U-q[gl(1\1)] and associated q-vertex operators. We obtain the exchange relations satisfied by these vertex operators. The characters and supercharacters associated with these irreducible representations are calculated'. (C) 2000 Published by Elsevier Science B.V. All rights reserved.