953 resultados para Generalized model
Resumo:
A comprehensive scheme has been developed for the prediction of radiation from engine exhaust and its incidence on an arbitrarily located sensor. Existing codes have been modified for the simulation of flows inside nozzles and jets. A novel view factor computation scheme has been applied for the determination of the radiosities of the discrete panels of a diffuse and gray nozzle surface. The narrowband model has been used to model the radiation from the gas inside the nozzle and the nonhomogeneous jet. The gas radiation from the nozzle inclusive of nozzle surface radiosities have been used as boundary conditions on the jet radiation. Geometric modeling techniques have been developed to identify and isolate nozzle surface panels and gas columns of the nozzle and jet to determine the radiation signals incident on the sensor. The scheme has been validated for intensity and heat flux predictions, and some useful results of practical importance have been generated to establish its viability for infrared signature analysis of jets.
Resumo:
A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.
Resumo:
A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.
Resumo:
A generalized model for the effective thermal conductivity of porous media is derived based on the fact that statistical self-similarity exists in porous media. The proposed model assumes that porous media consist of two portions: randomly distributed non-touching particles and self-similarly distributed particles contacting each other with resistance. The latter are simulated by Sierpinski carpets with side length L = 13 and cutout size C = 3, 5, 7 and 9, respectively, depending upon the porosity concerned. Recursive formulae are presented and expressed as a function of porosity, ratio of areas, ratio of component thermal conductivities and contact resistance, and there is no empirical constant and every parameter has a clear physical meaning. The model predictions are compared with the existing experimental data, and good agreement is found in a wide range of porosity of 0.14-0.80, and this verifies the validity of the proposed model.
Resumo:
La dinámica demográfica ha sido modelada con ecuaciones diferenciales desde que Malthus comenzó sus estudios hace más de doscientos años atrás. Los modelos convencionales siempre tratan relaciones entre especies como estáticas, denotando sólo su dependencia durante un período fijo del tiempo, aunque sea conocido que las relaciones entre especies pueden cambiar con el tiempo. Aquí proponemos un modelo para la dinámica demográfica que incorpora la evolución con el tiempo de las interacciones entre especies. Este modelo incluye una amplia gama de interacciones, de depredador-presa a las relaciones mutualistas, ya sea obligada o facultativa. El mecanismo que describimos permite la transición de una clase de relación entre especies a algún otro, según algunos parámetros externos fijados por el contexto. Estas transiciones podrían evitar la extinción de una de las especies, si esto termina por depender demasiado del ambiente o su relación con las otras especies.
Resumo:
In this work, for the first time, we present a physically based analytical threshold voltage model for omega gate silicon nanowire transistor. This model is developed for long channel cylindrical body structure. The potential distribution at each and every point of the of the wire is derived with a closed form solution of two dimensional Poisson's equation, which is then used to model the threshold voltage. Proposed model can be treated as a generalized model, which is valid for both surround gate and semi-surround gate cylindrical transistors. The accuracy of proposed model is verified for different device geometry against the results obtained from three dimensional numerical device simulators and close agreement is observed.
Resumo:
Genetic algorithms (GAs) are search methods that are being employed in a multitude of applications with extremely large search spaces. Recently, there has been considerable interest among GA researchers in understanding and formalizing the working of GAs. In an earlier paper, we have introduced the notion of binomially distributed populations as the central idea behind an exact ''populationary'' model of the large-population dynamics of the GA operators for objective functions called ''functions of unitation.'' In this paper, we extend this populationary model of GA dynamics to a more general class of objective functions called functions of unitation variables. We generalize the notion of a binomially distributed population to a generalized binomially distributed population (GBDP). We show that the effects of selection, crossover, and mutation can be exactly modelled after decomposing the population into GBDPs. Based on this generalized model, we have implemented a GA simulator for functions of two unitation variables-GASIM 2, and the distributions predicted by GASIM 2 match with those obtained from actual GA runs. The generalized populationary model of GA dynamics not only presents a novel and natural way of interpreting the workings of GAs with large populations, but it also provides for an efficient implementation of the model as a GA simulator. (C) Elsevier Science Inc. 1997.
Resumo:
The purpose of this chapter is to provide an elementary introduction to the non-renewable resource model with multiple demand curves. The theoretical literature following Hotelling (1931) assumed that all energy needs are satisfied by one type of resource (e.g. ‘oil’), extractible at different per-unit costs. This formulation implicitly assumes that all users are the same distance from each resource pool, that all users are subject to the same regulations, and that motorist users can switch as easily from liquid fossil fuels to coal as electric utilities can. These assumptions imply, as Herfindahl (1967) showed, that in competitive equilibrium all users will exhaust a lower cost resource completely before beginning to extract a higher cost resource: simultaneous extraction of different grades of oil or of oil and coal should never occur. In trying to apply the single-demand curve model during the last twenty years, several teams of authors have independently found a need to generalize it to account for users differing in their (1) location, (2) regulatory environment, or (3) resource needs. Each research team found that Herfindahl's strong, unrealistic conclusion disappears in the generalized model; in its place, a weaker Herfindahl result emerges. Since each research team focussed on a different application, however, it has not always been clear that everyone has been describing the same generalized model. Our goal is to integrate the findings of these teams and to exposit the generalized model in a form which is easily accessible.
Resumo:
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
Resumo:
The objective of this paper is to present a generalized analytical-numerical model of the internal flow in heat pipes. The model formulation is based on two-dimensional formulation of the energy and momentum equations in the vapour and liquid regions and also in the metallic tube. The numerical solution of the model is obtained by using the descretization scheme LOAD and the SIMPLE numerical code. The flow fields, as well as the pressure fields, for different geometries were obtained and discussed. Copyright © 1996 Elsevier Science Ltd.
Resumo:
Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.
Resumo:
Non-linear finite deformations of articular cartilages under physiological loading conditions can be attributed to hyperelastic behavior. This paper contains experimental results of indentation tests in finite deformation and proposes an empirical based new generalized hyperelastic constitutive model to account for strain-rate dependency for humeral head cartilage tissues. The generalized model is based on existing hyperelastic constitutive relationships that are extensively used to represent biological tissues in biomechanical literature. The experimental results were obtained for three loading velocities, corresponding to low (1x10-3 s-1), moderate and high strain-rates (1x10-1 s-1), which represent physiological loading rates that are experienced in daily activities such as lifting, holding objects and sporting activities. Hyperelastic material parameters were identified by non linear curve fitting procedure. Analysis demonstrated that the material behavior of cartilage can be effectively decoupled into strain-rate independent(elastic) and dependent parts. Further, experiments conducted using different indenters indicated that the parameters obtained are significantly affected by the indenter size, potentially due to structural inhomogeneity of the tissue. The hyperelastic constitutive model developed in this paper opens a new avenue for the exploration of material properties of cartilage tissues.