948 resultados para Generalized additive model (GAM)
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation
Resumo:
An important statistical development of the last 30 years has been the advance in regression analysis provided by generalized linear models (GLMs) and generalized additive models (GAMs). Here we introduce a series of papers prepared within the framework of an international workshop entitled: Advances in GLMs/GAMs modeling: from species distribution to environmental management, held in Riederalp, Switzerland, 6-11 August 2001.We first discuss some general uses of statistical models in ecology, as well as provide a short review of several key examples of the use of GLMs and GAMs in ecological modeling efforts. We next present an overview of GLMs and GAMs, and discuss some of their related statistics used for predictor selection, model diagnostics, and evaluation. Included is a discussion of several new approaches applicable to GLMs and GAMs, such as ridge regression, an alternative to stepwise selection of predictors, and methods for the identification of interactions by a combined use of regression trees and several other approaches. We close with an overview of the papers and how we feel they advance our understanding of their application to ecological modeling.
Resumo:
El calamar gigante Dosidicus gigas (d'Orbigny, 1835) es un depredador importante en el ecosistema del Perú. Se postula que el papel del calamar gigante varía teniendo en cuenta la talla, tiempo, hora, temperatura y distribución espacial. Para comprobar esta hipótesis se aplicó un modelo aditivo generalizado (GAM) en datos biológicos de alimentación de 4178 calamares gigantes capturados por la flota industrial pesquera a lo largo del litoral peruano (3ºS a 18ºS) desde 2 a 299 millas náuticas (mn) de distancia a la costa desde el año 2004 a 2009 realizados por el Laboratorio de Ecología Trófica del Instituto del Mar del Perú (IMARPE). La talla de los calamares estudiados fluctuó entre 14 y 112 cm de longitud de manto (LM). En total 43 item-presa fueron registrados, los grupos más importantes fueron los cefalópodos (Dosidicus gigas), Teleosteii (Photichthyidae, Myctophidae y Nomeidae) y Malacostraca crustáceos (Euphausiidae). Las presas principales fueron D. gigas (indicando canibalismo) en términos gravimétricos (% W=35.4), los otros cephalopodos en frecuencia de ocurrencia (FO=14.4), y los eufáusidos en términos de abundancia relativa (% N=62.2). Estos resultados reflejan una alta variabilidad de la dieta, y un espectro trófico similar en comparación con otras latitudes en ambos hemisferios (México y Chile). Los modelos GAM muestran que todas las variables predictoras fueron significativas en relación a la variable respuesta llenura estomacal (p <0.0001). La llenura estomacal fue mayor en los individuos juveniles, también durante la noche hubo mayor consumo, mientras no se reflejaron tendencias en la alimentación con relación a la temperatura superficial del mar (TSM), pero espacialmente se observan cambios en la dieta, aumentando el porcentaje de llenura a medida que esta especie se aleja de la costa. Por lo tanto se concluye que la dieta del calamar gigante depende de la talla y su distribución espacio-temporal.
Resumo:
1. The rapid expansion of systematic monitoring schemes necessitates robust methods to reliably assess species' status and trends. Insect monitoring poses a challenge where there are strong seasonal patterns, requiring repeated counts to reliably assess abundance. Butterfly monitoring schemes (BMSs) operate in an increasing number of countries with broadly the same methodology, yet they differ in their observation frequency and in the methods used to compute annual abundance indices. 2. Using simulated and observed data, we performed an extensive comparison of two approaches used to derive abundance indices from count data collected via BMS, under a range of sampling frequencies. Linear interpolation is most commonly used to estimate abundance indices from seasonal count series. A second method, hereafter the regional generalized additive model (GAM), fits a GAM to repeated counts within sites across a climatic region. For the two methods, we estimated bias in abundance indices and the statistical power for detecting trends, given different proportions of missing counts. We also compared the accuracy of trend estimates using systematically degraded observed counts of the Gatekeeper Pyronia tithonus (Linnaeus 1767). 3. The regional GAM method generally outperforms the linear interpolation method. When the proportion of missing counts increased beyond 50%, indices derived via the linear interpolation method showed substantially higher estimation error as well as clear biases, in comparison to the regional GAM method. The regional GAM method also showed higher power to detect trends when the proportion of missing counts was substantial. 4. Synthesis and applications. Monitoring offers invaluable data to support conservation policy and management, but requires robust analysis approaches and guidance for new and expanding schemes. Based on our findings, we recommend the regional generalized additive model approach when conducting integrative analyses across schemes, or when analysing scheme data with reduced sampling efforts. This method enables existing schemes to be expanded or new schemes to be developed with reduced within-year sampling frequency, as well as affording options to adapt protocols to more efficiently assess species status and trends across large geographical scales.
Resumo:
This paper presents a general modeling approach to investigate and to predict measurement errors in active energy meters both induction and electronic types. The measurement error modeling is based on Generalized Additive Model (GAM), Ridge Regression method and experimental results of meter provided by a measurement system. The measurement system provides a database of 26 pairs of test waveforms captured in a real electrical distribution system, with different load characteristics (industrial, commercial, agricultural, and residential), covering different harmonic distortions, and balanced and unbalanced voltage conditions. In order to illustrate the proposed approach, the measurement error models are discussed and several results, which are derived from experimental tests, are presented in the form of three-dimensional graphs, and generalized as error equations. © 2009 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Seasonal and interannual changes (1993e2012) of water temperature and transparency, river discharge, salinity, water quality properties, chlorophyll a (chl-a) and the carbon biomass of the main taxonomical phytoplankton groups were evaluated at a shallow station (~2 m) in the subtropical Patos Lagoon Estuary (PLE), Brazil. Large variations in salinity (0e35), due to a complex balance between Patos Lagoon outflow and oceanic inflows, affected significantly other water quality variables and phytoplankton dynamics, masking seasonal and interannual variability. Therefore, salinity effect was filtered out by means of a Generalized Additive Model (GAM). River discharge and salinity had a significant negative relation, with river discharge being highest and salinity lowest during July to October. Diatoms comprised the dominant phytoplankton group, contributing substantially to the seasonal cycle of chl-a showing higher values in austral spring/summer (September to April) and lowest in autumn/winter (May to August). PLE is a nutrient-rich estuary and the phytoplankton seasonal cycle was largely driven by light availability, with few exceptions in winter. Most variables exhibited large interannual variability. When varying salinity effect was accounted for, chl-a concentration and diatom biomass showed less irregularity over time, and significant increasing trends emerged for dinoflagellates and cyanobacteria. Long-term changes in phytoplankton and water quality were strongly related to variations in salinity, largely driven by freshwater discharge influenced by climatic variability, most pronounced for ENSO events. However, the significant increasing trend of the N:P ratio indicates that important environmental changes related to anthropogenic effects are undergoing, in addition to the hydrology in the PLE.
Resumo:
Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species.
Resumo:
In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model.
Resumo:
With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Understanding spatial distributions and how environmental conditions influence catch-per-unit-effort (CPUE) is important for increased fishing efficiency and sustainable fisheries management. This study investigated the relationship between CPUE, spatial factors, temperature, and depth using generalized additive models. Combinations of factors, and not one single factor, were frequently included in the best model. Parameters which best described CPUE varied by geographic region. The amount of variance, or deviance, explained by the best models ranged from a low of 29% (halibut, Charlotte region) to a high of 94% (sablefish, Charlotte region). Depth, latitude, and longitude influenced most species in several regions. On the broad geographic scale, depth was associated with CPUE for every species, except dogfish. Latitude and longitude influenced most species, except halibut (Areas 4 A/D), sablefish, and cod. Temperature was important for describing distributions of halibut in Alaska, arrowtooth flounder in British Columbia, dogfish, Alaska skate, and Aleutian skate. The species-habitat relationships revealed in this study can be used to create improved fishing and management strategies.
Resumo:
In the last decade the Sznajd model has been successfully employed in modeling some properties and scale features of both proportional and majority elections. We propose a version of the Sznajd model with a generalized bounded confidence rule-a rule that limits the convincing capability of agents and that is essential to allow coexistence of opinions in the stationary state. With an appropriate choice of parameters it can be reduced to previous models. We solved this model both in a mean-field approach (for an arbitrary number of opinions) and numerically in a Barabaacutesi-Albert network (for three and four opinions), studying the transient and the possible stationary states. We built the phase portrait for the special cases of three and four opinions, defining the attractors and their basins of attraction. Through this analysis, we were able to understand and explain discrepancies between mean-field and simulation results obtained in previous works for the usual Sznajd model with bounded confidence and three opinions. Both the dynamical system approach and our generalized bounded confidence rule are quite general and we think it can be useful to the understanding of other similar models.