854 resultados para General-purpose computing
Resumo:
General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.
Resumo:
Microprocessori basati su singolo processore (CPU), hanno visto una rapida crescita di performances ed un abbattimento dei costi per circa venti anni. Questi microprocessori hanno portato una potenza di calcolo nell’ordine del GFLOPS (Giga Floating Point Operation per Second) sui PC Desktop e centinaia di GFLOPS su clusters di server. Questa ascesa ha portato nuove funzionalità nei programmi, migliori interfacce utente e tanti altri vantaggi. Tuttavia questa crescita ha subito un brusco rallentamento nel 2003 a causa di consumi energetici sempre più elevati e problemi di dissipazione termica, che hanno impedito incrementi di frequenza di clock. I limiti fisici del silicio erano sempre più vicini. Per ovviare al problema i produttori di CPU (Central Processing Unit) hanno iniziato a progettare microprocessori multicore, scelta che ha avuto un impatto notevole sulla comunità degli sviluppatori, abituati a considerare il software come una serie di comandi sequenziali. Quindi i programmi che avevano sempre giovato di miglioramenti di prestazioni ad ogni nuova generazione di CPU, non hanno avuto incrementi di performance, in quanto essendo eseguiti su un solo core, non beneficiavano dell’intera potenza della CPU. Per sfruttare appieno la potenza delle nuove CPU la programmazione concorrente, precedentemente utilizzata solo su sistemi costosi o supercomputers, è diventata una pratica sempre più utilizzata dagli sviluppatori. Allo stesso tempo, l’industria videoludica ha conquistato una fetta di mercato notevole: solo nel 2013 verranno spesi quasi 100 miliardi di dollari fra hardware e software dedicati al gaming. Le software houses impegnate nello sviluppo di videogames, per rendere i loro titoli più accattivanti, puntano su motori grafici sempre più potenti e spesso scarsamente ottimizzati, rendendoli estremamente esosi in termini di performance. Per questo motivo i produttori di GPU (Graphic Processing Unit), specialmente nell’ultimo decennio, hanno dato vita ad una vera e propria rincorsa alle performances che li ha portati ad ottenere dei prodotti con capacità di calcolo vertiginose. Ma al contrario delle CPU che agli inizi del 2000 intrapresero la strada del multicore per continuare a favorire programmi sequenziali, le GPU sono diventate manycore, ovvero con centinaia e centinaia di piccoli cores che eseguono calcoli in parallelo. Questa immensa capacità di calcolo può essere utilizzata in altri campi applicativi? La risposta è si e l’obiettivo di questa tesi è proprio quello di constatare allo stato attuale, in che modo e con quale efficienza pùo un software generico, avvalersi dell’utilizzo della GPU invece della CPU.
Resumo:
The success of mainstream computing is largely due to the widespread availability of general-purpose architectures and of generic approaches that can be used to solve real-world problems cost-effectively and across a broad range of application domains. In this chapter, we propose that a similar generic framework is used to make the development of autonomic solutions cost effective, and to establish autonomic computing as a major approach to managing the complexity of today’s large-scale systems and systems of systems. To demonstrate the feasibility of general-purpose autonomic computing, we introduce a generic autonomic computing framework comprising a policy-based autonomic architecture and a novel four-step method for the effective development of self-managing systems. A prototype implementation of the reconfigurable policy engine at the core of our architecture is then used to develop autonomic solutions for case studies from several application domains. Looking into the future, we describe a methodology for the engineering of self-managing systems that extends and generalises our autonomic computing framework further.
Resumo:
142 p.
Resumo:
L'obiettivo della tesi è esplorare i più avanzati dispositivi, sensori e processori per la computazione spaziale, correlarli con i modelli di spatial computing, e derivarne un'architettura concettuale di middleware distribuito che possa supportare le più avanzate applicazioni in mobilità.
Resumo:
In this paper, weighted fair rate allocation for ATM available bit rate (ABR) service is discussed with the concern of the minimum cell rate (MCR). Weighted fairness with MCR guarantee has been discussed recently in the literature. In those studies, each ABR virtual connection (VC) is first allocated its MCR, then the remaining available bandwidth is further shared among ABR VCs according to their weights. For the weighted fairness defined in this paper, the bandwidth is first allocated according to each VC's weight; if a VC's weighted share is less than its MCR, it should be allocated its MCR instead of the weighted share. This weighted fairness with MCR guarantee is referred to as extended weighted (EXW) fairness. Certain theoretical issues related to EXW, such as its global solution and bottleneck structure, are first discussed in the paper. A distributed explicit rate allocation algorithm is then proposed to achieve EXW fairness in ATM networks. The algorithm is a general-purpose explicit rate algorithm in the sense that it can realise almost all the fairness principles proposed for ABR so far whilst only minor modifications may be needed.
Resumo:
Computer simulation has been widely accepted as an essential tool for the analysis of many engineering systems. It is nowadays perceived to be the most readily available and feasible means of evaluating operations in real railway systems. Based on practical experience and theoretical models developed in various applications, this paper describes the design of a general-purpose simulation system for train operations. Its prime objective is to provide a single comprehensive computer-aided engineering tool for most studies on railway operations so that various aspects of the railway systems with different operation characteristics can be investigated and analysed in depth. This system consists of three levels of simulation. The first is a single-train simulator calculating the running time of a train between specific points under different track geometry and traction conditions. The second is a dual-train simulator which is to find the minimum headway between two trains under different movement constraints, such as signalling systems. The third is a whole-system multi-train simulator which carries out process simulation of the real operation of a railway system according to a practical or planned train schedule or headway; and produces an overall evaluation of system performance.
Resumo:
This article discusses the design and development of GRDB (General Purpose Relational Data Base System) which has been implemented on a DEC-1090 system in Pascal. GRDB is a general purpose database system designed to be completely independent of the nature of data to be handled, since it is not tailored to the specific requirements of any particular enterprise. It can handle different types of data such as variable length records and textual data. Apart from the usual database facilities such as data definition and data manipulation, GRDB supports User Definition Language (UDL) and Security definition language. These facilities are provided through a SEQUEL-like General Purpose Query Language (GQL). GRDB provides adequate protection facilities up to the relation level. The concept of “security matrix” has been made use of to provide database protection. The concept of Unique IDentification number (UID) and Password is made use of to ensure user identification and authentication. The concept of static integrity constraints has been used to ensure data integrity. Considerable efforts have been made to improve the response time through indexing on the data files and query optimisation. GRDB is designed for an interactive use but alternate provision has been made for its use through batch mode also. A typical Air Force application (consisting of data about personnel, inventory control, and maintenance planning) has been used to test GRDB and it has been found to perform satisfactorily.
Resumo:
It has been shown that the conventional practice of designing a compensated hot wire amplifier with a fixed ceiling to floor ratio results in considerable and unnecessary increase in noise level at compensation settings other than optimum (which is at the maximum compensation at the highest frequency of interest). The optimum ceiling to floor ratio has been estimated to be between 1.5-2.0 ωmaxM. Application of the above considerations to an amplifier in which the ceiling to floor ratio is optimized at each compensation setting (for a given amplifier band-width), shows the usefulness of the method in improving the signal to noise ratio.
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.