963 resultados para General relativity (Physics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entanglement entropy in local quantum field theories is typically ultraviolet divergent due to short distance effects in the neighborhood of the entangling region. In the context of gauge/gravity duality, we show that surface terms in general relativity are able to capture this entanglement entropy. In particular, we demonstrate that for 1+1-dimensional (1 + 1d) conformal field theories (CFTs) at finite temperature whose gravity dual is Banados-Teitelboim-Zanelli (BTZ) black hole, the Gibbons-Hawking-York term precisely reproduces the entanglement entropy which can be computed independently in the field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IARD 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields - Galileo Galilei Inst Theoret Phys (GGI), Florence, ITALY - MAY 29-JUN 01, 2012. Edited by:Horowitz, LP

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recipe used to compute the symmetric energy-momentum tensor in the framework of ordinary field theory bears little resemblance to that used in the context of general relativity, if any. We show that if one stal ts fi om the field equations instead of the Lagrangian density, one obtains a unified algorithm for computing the symmetric energy-momentum tensor in the sense that it can be used for both usual field theory and general relativity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the presence of a scalar field around a spherically symmetric distribution of an ordinary matter, obtaining an exact solution for a given scalar field distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutron stars are some of the most fascinating objects in Nature. Essentially all aspects of physics seems to be represented inside them. Their cores are likely to contain deconfined quarks, hyperons and other exotic phases of matter in which the strong interaction is the dominant force. The inner region of their solid crust is penetrated by superfluid neutrons and their magnetic fields may reach well over 1012 Gauss. Moreover, their extreme mean densities, well above the densities of nuclei, and their rapid rotation rates makes them truly relativistic both in the special as well as in the general sense. This thesis deals with a small subset of these phenomena. In particular the exciting possibility of trapping of gravita-tional waves is examined from a theoretical point of view. It is shown that the standard condition R < 3M is not essential to the trapping mechanism. This point is illustrated using the elegant tool provided by the optical geometry. It is also shown that a realistic equation of state proposed in the literature allows stable neutron star models with closed circular null orbits, something which is closely related to trapped gravitational waves. Furthermore, the general relativistic theory of elasticity is reviewed and applied to stellar models. Both static equilibrium as well as radially oscillating configurations with elasticsources are examined. Finally, Killing tensors are considered and their applicability to modeling of stars is discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"April 23, 1962."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

100.00% 100.00%

Publicador: