883 resultados para General allocation problems
Resumo:
We study a simple model of assigning indivisible objects (e.g., houses, jobs, offices, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We completely describe all rules satisfying efficiency and resource-monotonicity. The characterized rules assign the objects in a sequence of steps such that at each step there is either a dictator or two agents who “trade” objects from their hierarchically specified “endowments.”
Resumo:
There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.
Inclusive education policy, the general allocation model and dilemmas of practice in primary schools
Resumo:
Background: Inclusive education is central to contemporary discourse internationally reflecting societies’ wider commitment to social inclusion. Education has witnessed transforming approaches that have created differing distributions of power, resource allocation and accountability. Multiple actors are being forced to consider changes to how key services and supports are organised. This research constitutes a case study situated within this broader social service dilemma of how to distribute finite resources equitably to meet individual need, while advancing inclusion. It focuses on the national directive with regard to inclusive educational practice for primary schools, Department of Education and Science Special Education Circular 02/05, which introduced the General Allocation Model (GAM) within the legislative context of the Education of Persons with Special Educational Needs (EPSEN) Act (Government of Ireland, 2004). This research could help to inform policy with ‘facts about what is happening on the ground’ (Quinn, 2013). Research Aims: The research set out to unearth the assumptions and definitions embedded within the policy document, to analyse how those who are at the coalface of policy, and who interface with multiple interests in primary schools, understand the GAM and respond to it, and to investigate its effects on students and their education. It examines student outcomes in the primary schools where the GAM was investigated. Methods and Sample The post-structural study acknowledges the importance of policy analysis which explicitly links the ‘bigger worlds’ of global and national policy contexts to the ‘smaller worlds’ of policies and practices within schools and classrooms. This study insists upon taking the detail seriously (Ozga, 1990). A mixed methods approach to data collection and analysis is applied. In order to secure the perspectives of key stakeholders, semi-structured interviews were conducted with primary school principals, class teachers and learning support/resource teachers (n=14) in three distinct mainstream, non-DEIS schools. Data from the schools and their environs provided a profile of students. The researcher then used the Pobal Maps Facility (available at www.pobal.ie) to identify the Small Area (SA) in which each student resides, and to assign values to each address based on the Pobal HP Deprivation Index (Haase and Pratschke, 2012). Analysis of the datasets, guided by the conceptual framework of the policy cycle (Ball, 1994), revealed a number of significant themes. Results: Data illustrate that the main model to support student need is withdrawal from the classroom under policy that espouses inclusion. Quantitative data, in particular, highlighted an association between segregated practice and lower socioeconomic status (LSES) backgrounds of students. Up to 83% of the students in special education programmes are from lower socio-economic status (LSES) backgrounds. In some schools 94% of students from LSES backgrounds are withdrawn from classrooms daily for special education. While the internal processes of schooling are not solely to blame for class inequalities, this study reveals the power of professionals to order children in school, which has implications for segregated special education practice. Such agency on the part of key actors in the context of practice relates to ‘local constructions of dis/ability’, which is influenced by teacher habitus (Bourdieu, 1984). The researcher contends that inclusive education has not resulted in positive outcomes for students from LSES backgrounds because it is built on faulty assumptions that focus on a psycho-medical perspective of dis/ability, that is, placement decisions do not consider the intersectionality of dis/ability with class or culture. This study argues that the student need for support is better understood as ‘home/school discontinuity’ not ‘disability’. Moreover, the study unearths the power of some parents to use social and cultural capital to ensure eligibility to enhanced resources. Therefore, a hierarchical system has developed in mainstream schools as a result of funding models to support need in inclusive settings. Furthermore, all schools in the study are ‘ordinary’ schools yet participants acknowledged that some schools are more ‘advantaged’, which may suggest that ‘ordinary’ schools serve to ‘bury class’ (Reay, 2010) as a key marker in allocating resources. The research suggests that general allocation models of funding to meet the needs of students demands a systematic approach grounded in reallocating funds from where they have less benefit to where they have more. The calculation of the composite Haase Value in respect of the student cohort in receipt of special education support adopted for this study could be usefully applied at a national level to ensure that the greatest level of support is targeted at greatest need. Conclusion: In summary, the study reveals that existing structures constrain and enable agents, whose interactions produce intended and unintended consequences. The study suggests that policy should be viewed as a continuous and evolving cycle (Ball, 1994) where actors in each of the social contexts have a shared responsibility in the evolution of education that is equitable, excellent and inclusive.
SpaceMap - Applying Meta-Heuristics to Real-World Space Allocation problems in Academic Institutions
Resumo:
En problemes d'assignació de recursos, normalment s'han de tenir en compte les incerteses que poden provocar canvis en les dades inicials. Aquests canvis dificulten l'aplicabilitat de les planificacions que s'hagin fet inicialment. Aquesta tesi se centra en l'elaboració de tècniques que consideren la incertesa alhora de cercar solucions robustes, és a dir solucions que puguin continuar essent vàlides encara que hi hagi canvis en l'entorn. Particularment, introduïm el concepte de robustesa basat en reparabilitat, on una solució robusta és una que pot ser reparada fàcilment en cas que hi hagi incidències. La nostra aproximació es basa en lògica proposicional, codificant el problema en una fórmula de satisfactibilitat Booleana, i aplicant tècniques de reformulació per a la generació de solucions robustes. També presentem un mecanisme per a incorporar flexibilitat a les solucions robustes, de manera que es pugui establir fàcilment el grau desitjat entre robustesa i optimalitat de les solucions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We consider general allocation problems with indivisibilities where agents' preferences possibly exhibit externalities. In such contexts many different core notions were proposed. One is the gamma-core whereby blocking is only allowed via allocations where the non-blocking agents receive their endowment. We show that if there exists an allocation rule satisfying ‘individual rationality’, ‘efficiency’, and ‘strategy-proofness’, then for any problem for which the gamma-core is non-empty, the allocation rule must choose a gamma-core allocation and all agents are indifferent between all allocations in the gamma-core. We apply our result to housing markets, coalition formation and networks.
Resumo:
A control allocation system implements a function that maps the desired control forces generated by the vehicle motion controller into the commands of the different actuators. In this article, a survey of control allocation methods for over-actuated underwater vehicles is presented. The methods are applicable for both surface vessels and underwater vehicles. The paper presents a survey of control allocation methods with focus on mathematical representation and solvability of thruster allocation problems. The paper is useful for university students and engineers who want to get an overview of state-of-the art control allocation methods as well as advance methods to solve more complex problems.
Resumo:
In this paper we propose a multiple resource interaction model in a game-theoretical framework to solve resource allocation problems in theater level military campaigns. An air raid campaign using SEAD aircraft and bombers against an enemy target defended by air defense units is considered as the basic platform. Conditions for the existence of saddle point in pure strategies is proved and explicit feedback strategies are obtained for a simplified model with linear attrition function limited by resource availability. An illustrative example demonstrates the key features.
Resumo:
We address the problem of allocating a single divisible good to a number of agents. The agents have concave valuation functions parameterized by a scalar type. The agents report only the type. The goal is to find allocatively efficient, strategy proof, nearly budget balanced mechanisms within the Groves class. Near budget balance is attained by returning as much of the received payments as rebates to agents. Two performance criteria are of interest: the maximum ratio of budget surplus to efficient surplus, and the expected budget surplus, within the class of linear rebate functions. The goal is to minimize them. Assuming that the valuation functions are known, we show that both problems reduce to convex optimization problems, where the convex constraint sets are characterized by a continuum of half-plane constraints parameterized by the vector of reported types. We then propose a randomized relaxation of these problems by sampling constraints. The relaxed problem is a linear programming problem (LP). We then identify the number of samples needed for ``near-feasibility'' of the relaxed constraint set. Under some conditions on the valuation function, we show that value of the approximate LP is close to the optimal value. Simulation results show significant improvements of our proposed method over the Vickrey-Clarke-Groves (VCG) mechanism without rebates. In the special case of indivisible goods, the mechanisms in this paper fall back to those proposed by Moulin, by Guo and Conitzer, and by Gujar and Narahari, without any need for randomization. Extension of the proposed mechanisms to situations when the valuation functions are not known to the central planner are also discussed. Note to Practitioners-Our results will be useful in all resource allocation problems that involve gathering of information privately held by strategic users, where the utilities are any concave function of the allocations, and where the resource planner is not interested in maximizing revenue, but in efficient sharing of the resource. Such situations arise quite often in fair sharing of internet resources, fair sharing of funds across departments within the same parent organization, auctioning of public goods, etc. We study methods to achieve near budget balance by first collecting payments according to the celebrated VCG mechanism, and then returning as much of the collected money as rebates. Our focus on linear rebate functions allows for easy implementation. The resulting convex optimization problem is solved via relaxation to a randomized linear programming problem, for which several efficient solvers exist. This relaxation is enabled by constraint sampling. Keeping practitioners in mind, we identify the number of samples that assures a desired level of ``near-feasibility'' with the desired confidence level. Our methodology will occasionally require subsidy from outside the system. We however demonstrate via simulation that, if the mechanism is repeated several times over independent instances, then past surplus can support the subsidy requirements. We also extend our results to situations where the strategic users' utility functions are not known to the allocating entity, a common situation in the context of internet users and other problems.
Resumo:
Resource Allocation Problems (RAPs) are concerned with the optimal allocation of resources to tasks. Problems in fields such as search theory, statistics, finance, economics, logistics, sensor & wireless networks fit this formulation. In literature, several centralized/synchronous algorithms have been proposed including recently proposed auction algorithm, RAP Auction. Here we present asynchronous implementation of RAP Auction for distributed RAPs.
Resumo:
Security is a critical concern around the world. Since resources for security are always limited, lots of interest have arisen in using game theory to handle security resource allocation problems. However, most of the existing work does not address adequately how a defender chooses his optimal strategy in a game with absent, inaccurate, uncertain, and even ambiguous strategy profiles' payoffs. To address this issue, we propose a general framework of security games under ambiguities based on Dempster-Shafer theory and the ambiguity aversion principle of minimax regret. Then, we reveal some properties of this framework. Also, we present two methods to reduce the influence of complete ignorance. Our investigation shows that this new framework is better in handling security resource allocation problems under ambiguities.