905 resultados para General Stress-response
Resumo:
ABSTRACT: BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.
Resumo:
The extracytoplasmic function sigma factor sigma(T) is the master regulator of general stress response in Caulobacter crescentus and controls the expression of its paralogue sigma(U). In this work we showed that PhyR and NepR act, respectively, as positive and negative regulators of sigma(T) expression and function. Biochemical data also demonstrated that NepR directly binds sigma(T) and the phosphorylated form of PhyR. We also described the essential role of the histidine kinase gene CC3474, here denominated phyK, for expression of sigma(T)-dependent genes and for resistance to stress conditions. Additionally, in vivo evidence of PhyK-dependent phosphorylation of PhyR is presented. This study also identified a conserved cysteine residue (C95) located in the periplasmic portion of PhyK that is crucial for the function of the protein. Furthermore, we showed that PhyK, PhyR and sigma(T) regulate the same set of genes and that sigma(T) apparently directly controls most of its regulon. In contrast, sigma(U) seems to have a very modest contribution to the expression of a subset of sigma(T)-dependent genes. In conclusion, this report describes the molecular mechanism involved in the control of general stress response in C. crescentus.
Resumo:
This PhD thesis is focused on cold atmospheric plasma treatments (GP) for microbial inactivation in food applications. In fact GP represents a promising emerging technology alternative to the traditional methods for the decontamination of foods. The objectives of this work were to evaluate: - the effects of GP treatments on microbial inactivation in model systems and in real foods; - the stress response in L. monocytogenes following exposure to different GP treatments. As far as the first aspect, inactivation curves were obtained for some target pathogens, i.e. Listeria monocytogenes and Escherichia coli, by exposing microbial cells to GP generated with two different DBD equipments and processing conditions (exposure time, material of the electrodes). Concerning food applications, the effects of different GP treatments on the inactivation of natural microflora and Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli on the surface of Fuji apples, soya sprouts and black pepper were evaluated. In particular the efficacy of the exposure to gas plasma was assessed immediately after treatments and during storage. Moreover, also possible changes in quality parameters such as colour, pH, Aw, moisture content, oxidation, polyphenol-oxidase activity, antioxidant activity were investigated. Since the lack of knowledge of cell targets of GP may limit its application, the possible mechanism of action of GP was studied against 2 strains of Listeria monocytogenes by evaluating modifications in the fatty acids of the cytoplasmic membrane (through GC/MS analysis) and metabolites detected by SPME-GC/MS and 1H-NMR analyses. Moreover, changes induced by different treatments on the expression of selected genes related to general stress response, virulence or to the metabolism were detected with Reverse Transcription-qPCR. In collaboration with the Scripps Research Institute (La Jolla, CA, USA) also proteomic profiles following gas plasma exposure were analysed through Multidimensional Protein Identification Technology (MudPIT) to evaluate possible changes in metabolic processes.
Resumo:
The term water stress refers to the effects of low water availability on microbial growth and physiology. Water availability has been proposed as a major constraint for the use of microorganisms in contaminated sites with the purpose of bioremediation. Sphingomonas wittichii RW1 is a bacterium capable of degrading the xenobiotic compounds dibenzofuran and dibenzo-p-dioxin, and has potential to be used for targeted bioremediation. The aim of the current work was to identify genes implicated in water stress in RW1 by means of transposon mutagenesis and mutant growth experiments. Conditions of low water potential were mimicked by adding NaCl to the growth media. Three different mutant selection or separation method were tested which, however recovered different mutants. Recovered transposon mutants with poorer growth under salt-induced water stress carried insertions in genes involved in proline and glutamate biosynthesis, and further in a gene putatively involved in aromatic compound catabolism. Transposon mutants growing poorer on medium with lowered water potential also included ones that had insertions in genes involved in more general functions such as transcriptional regulation, elongation factor, cell division protein, RNA polymerase β or an aconitase.
Resumo:
The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.
Resumo:
Although mutations in intermediate filament proteins cause many human disorders, the detailed pathogenic mechanisms and the way these mutations affect cell metabolism are unclear. In this study, selected keratin mutations were analysed for their effect on the epidermal stress response. Expression profiles of two keratin-mutant cell lines from epidermolysis bullosa simplex patients (one severe and one mild) were compared to a control keratinocyte line before and after challenge with hypo-osmotic shock, a common physiological stress that transiently distorts cell shape. Fewer changes in gene expression were found in cells with the severely disruptive mutation (55 genes altered) than with the mild mutation (174 genes) or the wild type cells (261 genes) possibly due to stress response pre-activation in these cells. We identified 16 immediate-early genes contributing to a general cell response to hypo-osmotic shock, and 20 genes with an altered expression pattern in the mutant keratin lines only. A number of dual-specificity phosphatases (MKP-1, MKP-2, MKP-3, MKP-5 and hVH3) are differentially regulated in these cells, and their downstream targets p-ERK and p-p38 are significantly up-regulated in the mutant keratin lines. Our findings strengthen the case for the expression of mutant keratin proteins inducing physiological stress, and this intrinsic stress may affect the cell responses to secondary stresses in patients' skin.
Resumo:
Three approaches were used to examine the role of Ca$\sp{2+}$- and/or calmodulin (CaM)-regulated processes in the mammalian heat stress response. The focus of the first approach was on the major Ca$\sp{2+}$-binding protein, CaM, and involved the use of CaM antagonists that perturbed CaM-regulated processes during heat stress. The second approach involved the use of a cell line and its BPV-1 transformants that express increased basal levels of CaM, or parvalbumin--a Ca$\sp{2+}$-binding protein not normally found in these cells. The last approach used Ca$\sp{2+}$ chelators to buffer Ca$\sp{2+}$-transients.^ The principle conclusions resulting from these three experimental approaches are: (1) CaM antagonists cause a temperature-dependent potentiation of heat killing, but do not inhibit the triggering and development of thermotolerance suggesting some targets for heat killing are different from those that lead to thermotolerance; (2) Members of major HSP families (especially HSP70) can bind to CaM in a Ca$\sp{2+}$-dependent manner in vitro, and HSP have been associated with events leading to thermotolerance. But, because thermotolerance is not affected by CaM antagonists, and antagonists should interfere with HSP binding to CaM, the events leading to triggering or developing thermotolerance were not strongly dependent on HSP binding to CaM; (3) CaM antagonists can also bind to HSP70 (and possibly other HSP) suggesting an alternative mechanism for the action of these agents in heat killing may involve direct binding to other proteins, like HSP70, whose function is important for survival following heating and inhibiting their activity; and (4) The signal governing the rate of synthesis of another major HSP group, the HSP26 family, can be largely abrogated by elevated Ca$\sp{2+}$-binding proteins or Ca$\sp{2+}$ chelators without significantly reducing survival or thermotolerance suggesting if the HSP26 family is involved in either end point, it may function in (Ca$\sp{2+}$) $\sb{\rm i}$ homeostasis. ^
Resumo:
Uncoupling protein one (UCP1) is a mitochondrial inner membrane protein capable of uncoupling the electrochemical gradient from adenosine-5'-triphosphate (ATP) synthesis, dissipating energy as heat. UCP1 plays a central role in nonshivering thermogenesis in the brown adipose tissue (BAT) of hibernating animals and small rodents. A UCP1 ortholog also occurs in plants, and aside from its role in uncoupling respiration from ATP synthesis, thereby wasting energy, it plays a beneficial role in the plant response to several abiotic stresses, possibly by decreasing the production of reactive oxygen species (ROS) and regulating cellular redox homeostasis. However, the molecular mechanisms by which UCP1 is associated with stress tolerance remain unknown. Here, we report that the overexpression of UCP1 increases mitochondrial biogenesis, increases the uncoupled respiration of isolated mitochondria, and decreases cellular ATP concentration. We observed that the overexpression of UCP1 alters mitochondrial bioenergetics and modulates mitochondrial-nuclear communication, inducing the upregulation of hundreds of nuclear- and mitochondrial-encoded mitochondrial proteins. Electron microscopy analysis showed that these metabolic changes were associated with alterations in mitochondrial number, area and morphology. Surprisingly, UCP1 overexpression also induces the upregulation of hundreds of stress-responsive genes, including some involved in the antioxidant defense system, such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione-S-transferase (GST). As a consequence of the increased UCP1 activity and increased expression of oxidative stress-responsive genes, the UCP1-overexpressing plants showed reduced ROS accumulation. These beneficial metabolic effects may be responsible for the better performance of UCP1-overexpressing lines in low pH, high salt, high osmolarity, low temperature, and oxidative stress conditions. Overexpression of UCP1 in the mitochondrial inner membrane induced increased uncoupling respiration, decreased ROS accumulation under abiotic stresses, and diminished cellular ATP content. These events may have triggered the expression of mitochondrial and stress-responsive genes in a coordinated manner. Because these metabolic alterations did not impair plant growth and development, UCP1 overexpression can potentially be used to create crops better adapted to abiotic stress conditions.
Resumo:
Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.
Resumo:
Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.
Resumo:
The activity of the hypothalamic-pituitary-adrenal axis is modulated by the norepinephrinergic system and, in females, also by the ovarian hormones. We investigated the role of ovarian steroids and the locus coeruleus (LC) on stress-induced corticosterone secretion in female rats. Ovariectomized rats without hormonal replacement (OVX) or treated with estradiol (OVE) or estradiol plus progesterone (OVEP) were subjected to jugular cannulation. Immediately after that, each hormonal treatment group was subjected to LC lesion or sham surgery or no brain surgery. After 24 h, blood samples of all 9 groups were collected before and after ether inhalation. Other four groups (OVX control, sham and lesioned, and OVE) were perfused for glucocorticoid receptor (GR) immunocytochemistry in hippocampal CA1 neurons and paraventricular nucleus (PVN). Estradiol replacement decreased while LC lesions increased stress-induced corticosterone secretion. The effect of LC lesion was potentiated with the removal of ovarian steroids. Since GR expression of lesioned animals decreased in the hippocampus, but not in PVN, we suggest that the effect of LC lesion on corticosterone secretion could be due to a reduction in the efficiency of the negative feedback system in the CA1 neurons. However, this mechanism is not involved in the estradiol modulation on corticosteroid secretion, as no change in GR expression was observed in estradiol-treated animals.
Resumo:
The relationships between reproductive condition, level of reproductive investment and adrenocortical modulation to capture stress in marine turtles form the basis of this study. When subjected to either capture or ecological stressors, nesting marine turtles have demonstrated adrenocortical responses that are both small in magnitude, and slow in responsiveness. These observations were further investigated to determine whether this minimal stress response was a physiological strategy to maximize reproductive investment in adult green Chelonia mydas and hawksbill Eretmochelys imbricata turtles. Female green and hawksbill turtles exhibited a decrease in adrenocortical responsiveness with progressive reproductive condition. Breeding turtles exhibited most suppression of their adrenocortical response to capture compared to both non-breeding and pre-breeding female counterparts. Nesting green turtles maintained a suppressed adrenocortical response to capture throughout the nesting season despite decreased reproductive investment. In contrast, male green and hawksbill turtles were less able to modulate their corticosterone (B) response to acute capture stress. During breeding, male turtles possessed significantly greater adrenocortical responses to capture than females. These results could indicate that the large reproductive investment necessary for female marine turtle reproduction might underlie the marked decrease in adrenocortical responsiveness. This hormonal mechanism could function as one strategy by which female marine turtles maximize their current reproductive event, even though under certain situations this mechanism could entail costs to female survival.
Resumo:
High salinity causes remarkable losses in rice productivity worldwide mainly because it inhibits growth and reduces grain yield. To cope with environmental changes, plants evolved several adaptive mechanisms, which involve the regulation of many stress-responsive genes. Among these, we have chosen OsRMC to study its transcriptional regulation in rice seedlings subjected to high salinity. Its transcription was highly induced by salt treatment and showed a stress-dose-dependent pattern. OsRMC encodes a receptor-like kinase described as a negative regulator of salt stress responses in rice. To investigate how OsRMC is regulated in response to high salinity, a salt-induced rice cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsRMC promoter as bait. Thereby, two transcription factors (TFs), OsEREBP1 and OsEREBP2, belonging to the AP2/ERF family were identified. Both TFs were shown to bind to the same GCC-like DNA motif in OsRMC promoter and to negatively regulate its gene expression. The identified TFs were characterized regarding their gene expression under different abiotic stress conditions. This study revealed that OsEREBP1 transcript level is not significantly affected by salt, ABA or severe cold (5 °C) and is only slightly regulated by drought and moderate cold. On the other hand, the OsEREBP2 transcript level increased after cold, ABA, drought and high salinity treatments, indicating that OsEREBP2 may play a central role mediating the response to different abiotic stresses. Gene expression analysis in rice varieties with contrasting salt tolerance further suggests that OsEREBP2 is involved in salt stress response in rice.
Resumo:
Dissertation presented to obtain the Ph.D degree in Plant Physiology
Resumo:
Fish transport is one of the most stressful procedures in aquaculture facilities. The present work evaluated the stress response of matrinxã to transportation procedures, and the use of clove oil as an alternative to reduce the stress response to transport in matrinxã (Brycon cephalus). Clove oil solutions were tested in concentrations of 0, 1, 5 and 10 mg/L during matrinxã transportation in plastic bags, supplied with water and oxygen as the usual field procedures in Brazil. Clove oil reduced some of the physiological stress responses (plasma cortisol, glucose and ions) that we measured. The high energetic cost to matrinxã cope with the transport stress was clear by the decrease of liver glycogen after transport. Our results suggest that clove oil (5 mg/l) can mitigate the stress response in matrinxã subjected to transport.