880 resultados para Gene-expression Profiles
Resumo:
Microcystins are heptapeptide toxins produced by cyanobacteria. Microcystin-RR(MC-RR) is a common variant among the 80 variants identified so far. There have been many investigations documenting the toxic effects of microcystins on animals and higher plants, but little is known on the toxic effects of microcystins on algae, especially at molecular level. We studied the effects of MC-RR on gene expression profile of a few antioxidant enzymes and heat shock protein-70 (Hsp70) in Synechocystis sp. PCC6803. After two days post-exposure, a high dose toxin (5 mg/l, about 4.8 x 10(-3) mM) significantly increased expression levels of the genes gpx1, sodB, katG, acnB, gamma-TMTand dnaK2, while a relatively low dose toxin (1 mg/l, about 9.63 x 10(-4) mM) induced a moderate and slow increase of gene expression. Our results indicate that MC-RR could induce the oxidative stress in Synechocystis sp. PCC6803 and the increase in gene expression of antioxidant enzymes and Hsp70 might protect the organism from the oxidative damage. in addition, cell aggregation was observed during the early period of exposure, which might be a specific oxidative stress reaction to MC-RR. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Microcystin-LR (MC-LR) is the most frequently studied cyclic heptatoxin produced by cyanobacteria, which has tremendous negative impacts on fish, while its molecular mechanism behind remained unclear at present. Here, Affymetrix Zebrafish GeneChip was used to identify alterations in gene expression of zebrafish (Danio rerio) after MC-LR exposure. Among the 14,900 transcripts in the microarray, 273 genes were differentially expressed, in which 243 genes were elevated and 30 were decreased. According to GOstat analysis, MC-LR mainly influenced the cell cycle and mitogen-activated protein kinases (MAPK) signaling pathways. In addition, many immune-related genes were also influenced. These data suggest that MC-LR could promote tumorigenesis and cause immunotoxicity in fish. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The accurate recognition of cancer subtypes is very significant in clinic. Especially, the DNA microarray gene expression technology is applied to diagnosing and recognizing cancer types. This paper proposed a method of that recognized cancer subtypes based on geometrical learning. Firstly, the cancer genes expression profiles data was pretreated and selected feature genes by conventional method; then the expression data of feature genes in the training samples was construed each convex hull in the high-dimensional space using training algorithm of geometrical learning, while the independent test set was tested by the recognition algorithm of geometrical learning. The method was applied to the human acute leukemia gene expression data. The accuracy rate reached to 100%. The experiments have proved its efficiency and feasibility.
Resumo:
Microarray technique was used to analyze the gene expression profiles of shrimp when they were challenged by WSSV and heat-inactivated Vibrio anguillarum, respectively. At 6 h post challenge (HPC), a total of 806 clones showed differential expression profile in WSSV-challenged samples, but not in Vibrio-challenged samples. The genes coding energy metabolism enzyme and structure protein were the most downregulated elements in 6 h post WSSV-challenged (HPC-WSSV) tissues. However, a total of 155 clones showed differential expression in the Vibrio-challenged samples, but not in WSSV-challenged samples. Serine-type endopeptidase and lysosome-related genes were the most upregulated elements in tissues 6 h post Vibrio challenge (HPC-Vibrio). Totally, 188 clones showed differential expression in both 6 and 12 HPC-WSSV and HPC-Vibrio samples. Most of the differentially expressed genes (185/188) were downregulated in the samples of 12 HPC-WSSV, whereas upregulated in the samples at 6 and 12 HPC-Vibrio and 6 HPC-WSSV. The expression profiles of three differentially expressed genes identified in microarray hybridization were analyzed in hemocytes, lymphoid organ, and hepatopancreas of shrimp challenged by WSSV or Vibrio through real-time PCR. The results further confirmed the microarray hybridization results. The data will provide great help for us in understanding the immune mechanism of shrimp responding to WSSV or Vibrio.
Resumo:
In the event of a terrorist-mediated attack in the United States using radiological or improvised nuclear weapons, it is expected that hundreds of thousands of people could be exposed to life-threatening levels of ionizing radiation. We have recently shown that genome-wide expression analysis of the peripheral blood (PB) can generate gene expression profiles that can predict radiation exposure and distinguish the dose level of exposure following total body irradiation (TBI). However, in the event a radiation-mass casualty scenario, many victims will have heterogeneous exposure due to partial shielding and it is unknown whether PB gene expression profiles would be useful in predicting the status of partially irradiated individuals. Here, we identified gene expression profiles in the PB that were characteristic of anterior hemibody-, posterior hemibody- and single limb-irradiation at 0.5 Gy, 2 Gy and 10 Gy in C57Bl6 mice. These PB signatures predicted the radiation status of partially irradiated mice with a high level of accuracy (range 79-100%) compared to non-irradiated mice. Interestingly, PB signatures of partial body irradiation were poorly predictive of radiation status by site of injury (range 16-43%), suggesting that the PB molecular response to partial body irradiation was anatomic site specific. Importantly, PB gene signatures generated from TBI-treated mice failed completely to predict the radiation status of partially irradiated animals or non-irradiated controls. These data demonstrate that partial body irradiation, even to a single limb, generates a characteristic PB signature of radiation injury and thus may necessitate the use of multiple signatures, both partial body and total body, to accurately assess the status of an individual exposed to radiation.
Resumo:
Histone acetylation is a fundamental mechanism in the regulation of local chromatin conformation and gene expression. Research has focused on the impact of altered epigenetic environments on the expression of specific genes and their pathways. However, changes in histone acetylation also have a global impact on the cell. In this study we used digital texture analysis to assess global chromatin patterns following treatment with trichostatin A (TSA) and have observed significant alterations in the condensation and distribution of higher-order chromatin, which were associated with altered gene expression profiles in both immortalised normal PNT1A prostate cell line and androgen-dependent prostate cancer cell line LNCaP. Furthermore, the extent of TSA-induced disruption was both cell cycle and cell line dependent. This was illustrated by the identification of sub-populations of prostate cancer cells expressing high levels of H3K9 acetylation in the G2/M phase of the cell cycle that were absent in normal cell populations. In addition, the analysis of enriched populations of G1 cells showed a global decondensation of chromatin exclusively in normal cells.
Resumo:
There is a strong desire to exploit transcriptomics data from model species for the genetic improvement of non-model crops. Here, we use gene expression profiles from the commercial model Pinus taeda to identify candidate genes implicated in juvenile-mature wood transition in the non-model relative, P. sylvestris. Re-analysis of 'public domain' SAGE data from xylem tissues of P. taeda revealed 283 mature-abundant and 396 juvenile-abundant tags (P < 0.01), of which 70 and 137, respectively matched to genes with known function. Based on sequence similarity, we then isolated 16 putative homologues of genes that in P. taeda exhibited widest divergence in expression between juvenile and mature samples. Candidate expression levels in P. sylvestris were almost invariably differential between juvenile and mature woody tissue samples among two cohorts of five trees collected from the same seed source and selected for genetic uniformity by genetic distance analysis. However, the direction of differential expression was not always consistent with that described in the original P. taeda SAGE data. Correlation was observed between gene expression and juvenile-mature wood anatomical characteristics by OPLS analysis. Four candidates (alpha-tubulin, porin MIP1, lipid transfer protein and aquaporin like protein) apparently had greatest influence on the wood traits measured. Speculative function of these genes in relation to juvenile-mature wood transition is briefly explored. Thus, we demonstrate the feasibility of exploiting SAGE data from a model species to identify consistently differentially expressed candidates in a related non-model species.
Resumo:
Since the alkyl esters of p-hydroxybenzoic acid (parabens) can be measured intact in the human breast and possess oestrogenic properties, it has been suggested that they could contribute to an aberrant burden of oestrogen signalling in the human breast and so play a role in the rising incidence of breast cancer. However, although parabens have been shown to regulate a few single genes (reporter genes, pS2, progesterone receptor) in a manner similar to that of 17 beta-oestradiol, the question remains as to the full extent of the similarity in the overall gene profile induced in response to parabens compared with 17 beta-oestradiol. The GE-Amersham CodeLink 20 K human expression microarray system was used to profile the expression of 19881 genes in MCF7 human breast cancer cells following a 7-day exposure to 5 x 10(-4) m methylparaben, 10(-5) m n-butylparaben and 10(-8) m 17 beta-oestradiol. At these concentrations, the parabens gave growth responses in MCF7 cells of similar magnitude to 17 beta-oestradiol. The study identified genes which are upregulated or downregulated to a similar extent by methylparaben, n-butylparaben and 17 beta-oestradiol. However, the majority of genes were not regulated in the same way by all three treatments. Some genes responded differently to parabens from 17 beta-oestradiol, and furthermore, differences in expression of some genes could be detected even between the two individual parabens. Therefore, although parabens possess oestrogenic properties, their mimicry in terms of global gene expression patterns is not perfect and differences in gene expression profiles could result in consequences to the cells that are not identical to those following exposure to 17 beta-oestradiol. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)