997 resultados para Gene Transfection


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To assess the transfection of the gene that encodes green fluorescent protein (GFP) through direct intramyocardial injection. METHODS: The pREGFP plasmid vector was used. The EGFP gene was inserted downstream from the constitutive promoter of the Rous sarcoma virus. Five male dogs were used (mean weight 13.5 kg), in which 0.5 mL of saline solution (n=1) or 0.5 mL of plasmid solution containing 0.5 µg of pREGFP/dog (n=4) were injected into the myocardium of the left ventricular lateral wall. The dogs were euthanized 1 week later, and cardiac biopsies were obtained. RESULTS: Fluorescence microscopy showed differences between the cells transfected and not transfected with pREGFP plasmid. Mild fluorescence was observed in the cardiac fibers that received saline solution; however, the myocardial cells transfected with pREGFP had overt EGFP expression. CONCLUSION: Transfection with the EGFP gene in healthy canine myocardium was effective. The reproduction of this efficacy using vascular endothelial growth factor (VEGF) instead of EGFP aims at developing gene therapy for ischemic heart disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient and continuous recombinant protein expression by HEK cells was evaluated in a perfused monolithic bioreactor. Highly porous synthetic cryogel scaffolds (10ml bed volume) were characterised by scanning electron microscopy and tested as cell substrates. Efficient seeding was achieved (94% inoculum retained, with 91-95% viability). Metabolite monitoring indicated continuous cell growth, and endpoint cell density was estimated by genomic DNA quantification to be 5.2x108, 1.1x109 and 3.5x1010 at day 10, 14 and 18. Culture of stably transfected cells allowed continuous production of the Drosophila cytokine Spätzle by the bioreactor at the same rate as in monolayer culture (total 1.2 mg at d18) and this protein was active. In transient transfection experiments more protein was produced per cell compared with monolayer culture. Confocal microscopy confirmed homogenous GFP expression after transient transfection within the bioreactor. Monolithic bioreactors are thus shown to be a flexible and powerful tool for manufacturing recombinant proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta 1-6 structure of N-linked oligosaccharides, formed by beta-1,6-N-acetylglucosaminyltransferase (GnT-V), is associated with metastatic potential. We established a highly metastatic subclone, B16-hm, from low metastatic B16-F1 murine melanoma cells. The gene encoding beta-1,4-N-acetylglucosaminyltransferase (GnT-III) was introduced into the B16-hm cells, and three clones that stably expressed high GnT-III activity were obtained. In these transfectants, the affinity to leukoagglutinating phytohemagglutinin was reduced, whereas the binding to erythroagglutinating phytohemagglutinin was increased, indicating that the level of beta 1-6 structure was decreased due to competition for substrate between intrinsic GnT-V and ectopically expressed GnT-III. Lung metastasis after intravenous injection of the transfectants into syngeneic and nude mice was significantly suppressed, suggesting that the decrease in beta 1-6 structure suppressed metastasis via a mechanism independent of the murine system. These transfectants also displayed decreased invasiveness into Matrigel and inhibited cell attachment to collagen and laminin. Cell growth was not affected. Our results demonstrate a causative role for beta 1-6 branches in invasion and cell attachment in the extravasation stage of metastasis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pentamidine (PEN) is an alternative compound to treat antimony-resistant leishmaniasis patients, which cellular target remains unclear. One approach to the identification of prospective targets is to identify genes able to mediate PEN resistance following overexpression. Starting from a genomic library of transfected parasites bearing a multicopy episomal cosmid vector containing wild-type Leishmania major DNA, we isolated one locus capable to render PEN resistance to wild type cells after DNA transfection. In order to map this Leishmania locus, cosmid insert was deleted by two successive sets of partial digestion with restriction enzymes, followed by transfection into wild type cells, overexpression, induction and functional tests in the presence of PEN. To determine the Leishmania gene related to PEN resistance, nucleotide sequencing experiments were done through insertion of the transposon Mariner element of Drosophila melanogaster (mosK) into the deleted insert to work as primer island. Using general molecular techniques, we described here this method that permits a quickly identification of a functional gene facilitating nucleotide sequence experiments from large DNA fragments. Followed experiments revealed the presence of a P-Glycoprotein gene in this locus which role in Leishmania metabolism has now been analyzed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Les résultats préliminaires de trois essais cliniques de thérapie génique d'une forme agressive de rétinite pigmentaire (l'amaurose congénitale de Leber) ont prouvé que le traitement des maladies dégénératives de la rétine par transfert de gène peut être sûr et efficace pour rétablir une fonction visuelle. Il faudra encore attendre les résultats à long terme de ces études pour que soit définitivement validée cette approche thérapeutique. Dans l'intervalle, il importe de se préparer à son introduction en ophtalmologie de façon à la rendre accessible à nos malades. Pratiquement cela revient à promouvoir: 1) le recrutement; 2) la caractérisation du phénotype et du génotype des sujets atteints et 3) la constitution d'un registre des rétinopathies héréditaires. Recently, preliminary results of three clinical gene therapy trials for early onset retinitis pigmentosa--Leber congenital amaurosis--suggested that treating this degenerative retinal disease by gene transfection can be safe and efficient to restore a visual function. The definitive validation of this therapeutic approach depends on the long-term results. The forthcoming availability of gene therapy in ophthalmology prompts the implementation: of 1) recruitment, 2) phenotyping and genotyping of affected patients, 3) and creation of a hereditary retinopathy registry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the de novo synthesis of glutathione (GSH). The catalytic subunit (GCLC) of GCL contains a GAG trinucleotide-repeat (TNR) polymorphism within the 5'-untranslated region (5'-UTR) that has been associated with various human disorders. Although several studies suggest that this variation influences GSH content, its implication for GCLC expression remains unknown. To better characterize its functional significance, we performed reporter gene assays with constructs containing the complete GCLC 5'-UTR upstream of a luciferase gene. Transfection of these vectors into various human cell lines did not reveal any significant differences between 7, 8, 9, or 10 GAG repeats, under either basal or oxidative stress conditions. To correlate these results with the previously described down-regulation induced by the C-129T GCLC promoter polymorphism, combinations of both variations were tested. Interestingly, the -129T allele down-regulates gene expression when combined with 7 GAG but not with 8, 9, or 10 GAG TNRs. This observation was confirmed in primary fibroblast cells, in which the combination of GAG TNR 7/7 and -129C/T genotypes decreased the GCLC protein level. These results provide evidence that interaction of the two variations can efficiently impair GCLC expression and thus suggest its involvement in the pathogenesis of diseases related to GSH metabolism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To evaluate the safety and potential use of poly(lactic) acid (PLA) and poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) as vectors for gene transfer to RPE cells. METHODS: Experiments were conducted with primary bovine RPE cells and with the ARPE-19 human RPE cell line. Rhodamine loaded NPs were used to study factors influencing the internalization process by the various RPE cells: concentrations of NPs, duration of contact time, stage of cell culture and ambient temperature. The extent of NPs internalization was evaluated by fluorescence and phase microscopy. Potential NP toxicity was measured by the trypan blue exclusion dye test and the MTT method. Green fluorescent protein (GFP) plasmid or red nuclear fluorescent protein (RNFP) plasmid were sequestered in NPs. The ability ot these "loaded" NPs to generate gene transfection and protein expression in RPE cells was assessed both in vivo and in vitro by fluorescence and confocal microscopy. RESULTS: The extent of NP internalization in cultured cells increases with their concentration reaching a plateau at 1 mg/ml and a contact time of up to 6 h. Temperature and culture stage did not influence the in vitro internalization process. No toxic effects on RPE cells could be detected when these were incubated with up to 4 mg/ml of NPs. In human and bovine RPE cells incubated with GFP loaded NPs, cytoplasmic green fluorescence was observed in 14+/-1.65% of the cultured cells. Incubation with RNFP loaded NPs yielded a nuclear red fluorescence in 18.9+/-1.6% of the cells. These percentage levels of expression initially detected after 48 h of incubation remained unchanged during the following 8 additional days in culture. No significant differences in the extent of cytoplasm or nuclear fluorescence expression were observed between bovine or human RPE cultured cells. In vivo, a preferential RNFP expression within the RPE cell layer was detected after intra vitreous injection of RNFP plasmid loaded NPs. CONCLUSIONS: The ability of PLGA NPs to sequester plasmids, their nontoxic characteristics, and rapid internalization enables gene transfer and expression in RPE cells. These findings may be of potential use when designing future gene therapy strategies for ocular diseases of the posterior segment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gene therapy, which involves the transfer of nucleic acid into target cells in patients, has become one of the most important and widely explored strategies to treat a variety of diseases, such as cancer, infectious diseases and genetic disorders. Relative to viral vectors that have high immunogenicity, toxicity and oncogenicity, non-viral vectors have gained a lot of interest in recent years. This is largely due to their ability to mimic viral vector features including the capacity to overcome extra- and intra-cellular barriers and to enhance transfection efficiency. Polyethyleneimine (PEI) has been extensively investigated as a non-viral vector. This cationic polymer, which is able to compact nucleic acid through electrostatic interactions and to transport it across the negatively charged cell membranes, has been shown to effectively transfect nucleic acid into different cell lines. Moreover, entrapment of gold nanoparticles (Au NPs) into such an amine-terminated polymer template has been shown to significantly enhance gene transfection efficiency. In this work, a novel non-viral nucleic acid vector system for enhanced and targeted nucleic acid delivery applications was developed. The system was based on the functionalization of PEI with folic acid (FA; for targeted delivery to cancer cells overexpressing FA receptors on their surface) using polyethylene glycol (PEG) as a linker molecule. This was followed by the preparation of PEI-entrapped Au NPs (Au PENPs; for enhancement of transfection efficiency). In the synthesis process, the primary amines of PEI were first partially modified with fluorescein isothiocyanate (FI) using a molar ratio of 1:7. The formed PEI-FI conjugate was then further modified with either PEG or PEGylated FA using a molar ratio of 1:1. This process was finally followed by entrapment of Au NPs into the modified polymers. The resulting conjugates and Au PENPs were characterized by several techniques, namely Nuclear Magnetic Resonance, Dynamic Light Scattering and Ultraviolet-Visible Spectroscopy, to assess their physicochemical properties. In the cell biology studies, the synthesized conjugates and their respective Au PENPs were shown to be non-toxic towards A2780 human ovarian carcinoma cells. The role of these materials as gene delivery agents was lastly evaluated. In the gene delivery studies, the A2780 cells were successfully transfected with plasmid DNA using the different vector systems. However, FA-modification and Au NPs entrapment were not determinant factors for improved transfection efficiency. In the gene silencing studies, on the other hand, the Au PENPs were shown to effectively deliver small interfering RNA, thereby reducing the expression of the B-cell lymphoma 2 protein. Based on these results, we can say that the systems synthesized in this work show potential for enhanced and targeted gene therapy applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concept of gene therapy involves the experimental transfer of a therapeutic gene into an individual's cells and tissues to replace an abnormal gene aiming to treat a disease, or to use the gene to treat a disease just like a medicine, improving the clinical status of a patient. The achievement of a foreigner nucleic acid into a population of cells requires its transfer to the target. Therefore, it is essential to create carriers (vectors) that transfer and protect the nucleic acid until it reaches the target. The obvious disadvantages of the use of viral vectors have directed the research for the development of a nonviral organized system such as emulsions. In fact, recently, there has been an increase of interest in its use in biotechnology as a nonviral vector for gene therapy. This review focuses on the progress of cationic emulsions and the improvement of the formulations, as a potential delivery system for gene therapy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

At present, gene transfection insufficient efficiency is a major drawback of non-viral gene therapy. The 2 main types of delivery systems deployed in gene therapy are based on viral or non-viral gene carriers. Several non-viral modalities can transfer foreign genetic material into the human body. To do so, polycation-based gene delivery methods must achieve sufficient efficiency in the transportation of therapeutic genes across various extracellular and intracellular barriers. These barriers include interactions with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is a potential obstacle for functional delivery to target cells. Cationic polymers constitute one of the most promising approaches to the use of viral vectors for gene therapy. A better understanding of the mechanisms by which DNA can escape from endosomes and traffic to enter the nucleus has triggered new strategies of synthesis and has revitalized research into new polycation-based systems. The objective of this review is to address the state of the art in gene therapy with synthetic and natural polycations and the latest advances to improve gene transfer efficiency in cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Currently, the major drawback of gene therapy is the gene transfection rate. The two main types of vectors that. are used in gene therapy are based on viral or non-viral gene delivery systems. There are several non-viral systems that can be used to transfer foreign genetic material into the human body. In order to do so, the DNA to be transferred must escape the processes that affect the disposition of macromolecules. These processes include the interaction with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is also a potential obstacle for functional delivery to the target cell. Cationic polymers have a great potential for DNA complexation and may be useful as non-viral vectors for gene therapy applications. The objective of this review was to address the state of the art in gene therapy using synthetic and natural polycations and the latest strategies to improve the efficiency of gene transfer into the cell.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

DNA mediated gene transfection is an important tool for moving and isolating genes from one cell type and putting them into a foreign genetic background. DNA transfection studies have been done routinely in many laboratories to identify and isolate transforming sequences in human tumors and tumor cell lines. A second technique, microcell-mediated chromosome transfer, allows the transfer of small numbers of intact human chromosome from one cell to another. This work was done to compare the efficiency of these two techniques in the transformation of NIH 3T3 mouse fibroblast cells.^ My intent in comparing these two techniques was to see if there was a difference in the transforming capability of DNA which has been purified of all associated protein and RNAs, and that of DNA which is introduced into a cell in its native form, the chromosome. If chromosomal sequences were capable of transforming the 3T3 cells in culture, the method could then be used as a way to isolate the relevant tumorigenic chromosomes from human tumors.^ The study shows, however, that even for those cell lines that contain transforming sequences identified by DNA-mediated gene transfer, those same sequences were unable to transform 3T3 cells when introduced to the cells by somatic fusion of human tumor microcells. I believe that the human transforming sequences in their original genetic conformation are not recognized by the mouse cell as genes which should be expressed; therefore, no noticeable transformation event was selected by this technique. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

STUDY DESIGN: The twy/twy mouse undergoes spontaneous chronic mechanical compression of the spinal cord; this in vivo model system was used to examine the effects of retrograde adenovirus (adenoviral vector [AdV])-mediated brain-derived neurotrophic factor (BDNF) gene delivery to spinal neural cells. OBJECTIVE: To investigate the targeting and potential neuroprotective effect of retrograde AdV-mediated BDNF gene transfection in the chronically compressed spinal cord in terms of prevention of apoptosis of neurons and oligodendrocytes. SUMMARY OF BACKGROUND DATA: Several studies have investigated the neuroprotective effects of neurotrophins, including BDNF, in spinal cord injury. However, no report has described the effects of retrograde neurotrophic factor gene delivery in compressed spinal cords, including gene targeting and the potential to prevent neural cell apoptosis. METHODS: AdV-BDNF or AdV-LacZ (as a control gene) was injected into the bilateral sternomastoid muscles of 18-week old twy/twy mice for retrograde gene delivery via the spinal accessory motor neurons. Heterozygous Institute of Cancer Research mice (+/twy), which do not undergo spontaneous spinal compression, were used as a control for the effects of such compression on gene delivery. The localization and cell specificity of ß-galactosidase expression (produced by LacZ gene transfection) and BDNF expression in the spinal cord were examined by coimmunofluorescence staining for neural cell markers (NeuN, neurons; reactive immunology protein, oligodendrocytes; glial fibrillary acidic protein, astrocytes; OX-42, microglia) 4 weeks after gene injection. The possible neuroprotection afforded by retrograde AdV-BDNF gene delivery versus AdV-LacZ-transfected control mice was assessed by scoring the prevalence of apoptotic cells (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells) and immunoreactivity to active caspases -3, -8, and -9, p75, neurofilament 200 kD (NF), and for the oligodendroglial progenitor marker, NG2. RESULTS.: Four weeks after injection, the retrograde delivery of the LacZ marker gene was identified in cervical spinal neurons and some glial cells, including oligodendrocytes in the white matter of the spinal cord, in both the twy/twy mouse and the heterozygous Institute of Cancer Research mouse (+/twy). In the compressed spinal cord of twy/twy mouse, AdV-BDNF gene transfection resulted in a significant decrease in the number of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells present in the spinal cord and a downregulation in the caspase apoptotic pathway compared with AdV-LacZ (control) gene transfection. There was a marked and significant increase in the areas of the spinal cord of AdV-BDNF-injected mice that were NF- and NG2-immunopositive compared with AdV-LacZ-injected mice, indicating the increased presence of neurons and oligodendrocytes in response to BDNF transfection. CONCLUSION: Our results demonstrate that targeted retrograde BDNF gene delivery suppresses apoptosis in neurons and oligodendrocytes in the chronically compressed spinal cord of twy/twy mouse. Further work is required to establish whether this method of gene delivery may provide neuroprotective effects in other situations of compressive spinal cord injury.