990 resultados para Gene Induction
Resumo:
BACKGROUND: To understand cancer-related modifications to transcriptional programs requires detailed knowledge about the activation of signal-transduction pathways and gene expression programs. To investigate the mechanisms of target gene regulation by human estrogen receptor alpha (hERalpha), we combine extensive location and expression datasets with genomic sequence analysis. In particular, we study the influence of patterns of DNA occupancy by hERalpha on expression phenotypes. RESULTS: We find that strong ChIP-chip sites co-localize with strong hERalpha consensus sites and detect nucleotide bias near hERalpha sites. The localization of ChIP-chip sites relative to annotated genes shows that weak sites are enriched near transcription start sites, while stronger sites show no positional bias. Assessing the relationship between binding configurations and expression phenotypes, we find binding sites downstream of the transcription start site (TSS) to be equally good or better predictors of hERalpha-mediated expression as upstream sites. The study of FOX and SP1 cofactor sites near hERalpha ChIP sites shows that induced genes frequently have FOX or SP1 sites. Finally we integrate these multiple datasets to define a high confidence set of primary hERalpha target genes. CONCLUSION: Our results support the model of long-range interactions of hERalpha with the promoter-bound cofactor SP1 residing at the promoter of hERalpha target genes. FOX motifs co-occur with hERalpha motifs along responsive genes. Importantly we show that the spatial arrangement of sites near the start sites and within the full transcript is important in determining response to estrogen signaling.
Resumo:
The interleukin 2 receptor (IL-2R) consists of three subunits, the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two Janus family protein tyrosine kinases (PTKs), Jak1 and Jak3, were shown to associate with IL-2R beta c and IL-2R gamma c, respectively, and their PTK activities are increased after IL-2 stimulation. A Jak3 mutant with truncation of the C-terminal PTK domain lacks its intrinsic kinase activity but can still associate with IL-2R gamma c. In a hematopoietic cell line, F7, that responds to either IL-2 or IL-3, overexpression of this Jak3 mutant results in selective inhibition of the IL-2-induced activation of Jak1/Jak3 PTKs and of cell proliferation. Of the three target nuclear protooncogenes of the IL-2 signaling, c-fos and c-myc genes, but not the bcl-2 gene, were found to be impaired. On the other hand, overexpression of the dominant negative form of the IL-2R gamma c chain, which lacks most of its cytoplasmic domain, in F7 cells resulted in the inhibition of all three protooncogenes. These results provide a further molecular basis for the critical role of Jak3 in IL-2 signaling and also suggest a Jak PTK-independent signaling pathway(s) for the bcl-2 gene induction by IL-2R.
Resumo:
Redox-sensitive cell signalling Thiol groups and the regulation of gene expression Redox-sensitive signal transduction pathways Protein kinases Protein phosphatases Lipids and phospholipases Antioxidant (electrophile) response element Intracellular calcium signalling Transcription factors NF-?B AP-1 p53 Cellular responses to oxidative stress Cellular responses to change in redox state Proliferation Cell death Immune cell function Reactive oxygen and nitrogen species – good or bad? Reactive oxygen species and cell death Reactive oxygen species and inflammation Are specific reactive oxygen species and antioxidants involved in modulating cellular responses? Specific effects of dietary antioxidants in cell regulation Carotenoids Vitamin E Flavonoids Inducers of phase II enzymes Disease states affected Oxidants, antioxidants and mitochondria Introduction Mitochondrial generation of reactive oxygen and nitrogen species Mitochondria and apoptosis Mitochondria and antioxidant defences Key role of mitochondrial GSH in the defence against oxidative damage Mitochondrial oxidative damage Direct oxidative damage to the mitochondrial electron transport chain Nitric oxide and damage to mitochondria Effects of nutrients on mitochondria Caloric restriction and antioxidants Lipids Antioxidants Techniques and approaches Mitochondrial techniques cDNA microarray approaches Proteomics approaches Transgenic mice as tools in antioxidant research Gene knockout and over expression Transgenic reporter mice Conclusions Future research needs
Resumo:
Human N-acetyltransferase Type I (NAT1) catalyses the acetylation of many aromatic amine and hydrazine compounds and it has been implicated in the catabolism of folic acid. The enzyme is widely expressed in the body, although there are considerable differences in the level of activity between tissues. A search of the mRNA databases revealed the presence of several NAT1 transcripts in human tissue that appear to be derived from different promoters. Because little is known about NAT1 gene regulation, the present study was undertaken to characterize one of the putative promoter sequences of the NAT1 gene located just upstream of the coding region. We show with reverse-transcriptase PCR that mRNA transcribed from this promoter (Promoter 1) is present in a variety of human cell-lines, but not in quiescent peripheral blood mononuclear cells. Using deletion mutant constructs, we identified a 20 bp sequence located 245 bases upstream of the translation start site which was sufficient for basal NAT1 expression. It comprised an AP-1 (activator protein 1)-binding site, flanked on either side by a TCATT motif. Mutational analysis showed that the AP-1 site and the 3' TCATT sequence were necessary for gene expression, whereas the 5' TCATT appeared to attenuate promoter activity. Electromobility shift assays revealed two specific bands made up by complexes of c-Fos/Fra, c-Jun, YY-1 (Yin and Yang 1) and possibly Oct-1. PMA treatment enhanced expression from the NAT1 promoter via the AP-1-binding site. Furthermore, in peripheral blood mononuclear cells, PMA increased endogenous NAT1 activity and induced mRNA expression from Promoter I, suggesting that it is functional in vivo.
Resumo:
Molecular oxygen (O2) is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS) such as superoxide (O2·-), hydrogen peroxide, and hydroxyl radical (OH·). If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST). Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE) commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat) genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod) genes.
Resumo:
Lactobacillus sanfranciscensis is a Gram-positive lactic acid bacterium used in food biotechnology. It is necessary to investigate many aspects of a model organism to elucidate mechanisms of stress response, to facilitate preparation, application and performance in food fermentation, to understand mechanisms of inactivation, and to identify novel tools for high pressure biotechnology. To investigate the mechanisms of the complex bacterial response to high pressure we have analyzed changes in the proteome and transcriptome by 2-D electrophoresis, and by microarrays and real time PCR, respectively. More than 16 proteins were found to be differentially expressed upon high pressure stress and were compared to those sensitive to other stresses. Except for one apparently high pressure-specific stress protein, no pressure-specific stress proteins were found, and the proteome response to pressure was found to differ from that induced by other stresses. Selected pressure-sensitive proteins were partially sequenced and their genes were identified by reverse genetics. In a transcriptome analysis of a redundancy cleared shot gun library, about 7% of the genes investigated were found to be affected. Most of them appeared to be up-regulated 2- to 4-fold and these results were confirmed by real time PCR. Gene induction was shown for some genes up-regulated at the proteome level (clpL/groEL/rbsK), while the response of others to high hydrostatic pressure at the transcriptome level seemed to differ from that observed at the proteome level. The up-regulation of selected genes supports the view that the cell tries to compensate for pressure-induced impairment of translation and membrane transport.
Resumo:
Exogenously added IL-10 rapidly inhibited Staphylococcus aureus- or LPS- induced cytokine mRNA expression in human PBMCs and monocytes, with a maximal effect observed when IL-10 was added from 20 h before until 1 h after the addition of the inducers. Nuclear run-on assays revealed that the inhibition of IL-12 p40, IL-12 p35, and TNF-α was at the gene transcriptional level and that the addition of IL-10 to S. aureus- or LPS-treated PBMCs did not affect mRNA stability. The inhibitory activity of IL-10 was abrogated by cycloheximide (CHX), suggesting the involvement of a newly synthesized protein(s). The addition of CHX at 2 h before S. aureus or LPS also inhibited the accumulation of IL-12 p40 mRNA, but did not inhibit IL-12 p35 and TNF-α mRNA. This finding suggests that p40 transcription is regulated through a de novo synthesized protein factor(s), whereas the addition of CHX at 2 h after S. aureus activation caused superinduction of the IL-12 p40, IL-12 p35, and TNF-α genes. These results indicate that in human monocytes, the mechanism(s) of IL-10 suppression of both IL-12 p40 and IL-12 p35 genes is primarily seen at the transcriptional level, and that the induction of the IL-12 p40 and p35 genes have different requirements for de novo protein synthesis.
Resumo:
The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The antipsychotic drug, haloperidol, elicits the expression of neurotensin and c-fos mRNA in the dorsal lateral region of the striatum and produces an acute cataleptic response in rodents that correlates with the motor side effects of haloperidol in humans. Mice harboring a targeted disruption of the RIIβ subunit of protein kinase A have a profound deficit in cAMP-stimulated kinase activity in the striatum. When treated with haloperidol, RIIβ mutant mice fail to induce either c-fos or neurotensin mRNA and the acute cataleptic response is blocked. However, both wild-type and mutant mice become cataleptic when neurotensin peptide is directly injected into the lateral ventricle, demonstrating that the kinase deficiency does not interfere with the action of neurotensin but rather its synthesis and release. These results establish a direct role for protein kinase A as a mediator of haloperidol induced gene induction and cataleptic behavior.
Resumo:
Understanding nuclear receptor signaling in vivo would be facilitated by an efficient methodology to determine where a nuclear receptor is active. Herein, we present a feedback-inducible expression system in transgenic mice to detect activated nuclear receptor effector proteins by using an inducible reporter gene. With this approach, reporter gene induction is not limited to a particular tissue, and, thus, this approach provides the opportunity for whole-animal screens. Furthermore, the effector and reporter genes are combined to generate a single strain of transgenic mice, which enables direct and rapid analysis of the offspring. The system was applied to localize sites where the retinoic acid receptor ligand-binding domain is activated in vivo. The results identify previously discovered sources of retinoids in the embryo and indicate the existence of previously undiscovered regions of retinoic acid receptor signaling in vivo. Notably, the feedback-inducible nuclear-receptor-driven assay, combined with an independent in vitro assay, provides evidence for a site of retinoid synthesis in the isthmic mesenchyme. These data illustrate the potential of feedback-inducible nuclear-receptor-driven analyses for assessing in vivo activation patterns of nuclear receptors and for analyzing pharmacological properties of natural and synthetic ligands of potential therapeutic value.
Resumo:
Cells are intrinsically noisy biochemical reactors: low reactant numbers can lead to significant statistical fluctuations in molecule numbers and reaction rates. Here we use an analytic model to investigate the emergent noise properties of genetic systems. We find for a single gene that noise is essentially determined at the translational level, and that the mean and variance of protein concentration can be independently controlled. The noise strength immediately following single gene induction is almost twice the final steady-state value. We find that fluctuations in the concentrations of a regulatory protein can propagate through a genetic cascade; translational noise control could explain the inefficient translation rates observed for genes encoding such regulatory proteins. For an autoregulatory protein, we demonstrate that negative feedback efficiently decreases system noise. The model can be used to predict the noise characteristics of networks of arbitrary connectivity. The general procedure is further illustrated for an autocatalytic protein and a bistable genetic switch. The analysis of intrinsic noise reveals biological roles of gene network structures and can lead to a deeper understanding of their evolutionary origin.
Resumo:
The second messenger cAMP stimulates the expression of numerous genes via the protein kinase A-mediated phosphorylation of the cAMP response element-binding protein (CREB) at Ser-133. Ser-133 phosphorylation, in turn, appears to induce target gene expression by promoting interaction between CREB and CBP, a 265-kDa nuclear phospho-CREB-binding protein. It is unclear, however, whether Ser-133 phosphorylation per se is sufficient for CREB-CBP complex formation and for target gene induction in vivo. Here we examine CREB activity in Jurkat T cells after stimulation of the T-cell receptor (TCR), an event that leads to calcium entry and diacylglycerol production. Triggering of the TCR stimulated Ser-133 phosphorylation of CREB with high stoichiometry, but TCR activation did not promote CREB-CBP complex formation or target gene induction unless suboptimal doses of cAMP agonist were provided as a costimulus. Our results demonstrate that, in addition to mediating Ser-133 phosphorylation of CREB, protein kinase A regulates additional proteins that are required for recruitment of the transcriptional apparatus to cAMP-responsive genes.
Resumo:
Plants can recognize and resist invading pathogens by signaling the induction of rapid defense responses. Often these responses are mediated by single dominant resistance genes (R genes). The products of R genes have been postulated to recognize the pathogen and trigger rapid host defense responses. Here we describe isolation of the classical resistance gene N of tobacco that mediates resistance to the well-characterized pathogen tobacco mosaic virus (TMV). The N gene was isolated by transposon tagging using the maize Activator (Ac) transposon. We confirmed isolation of the N gene by complementation of the TMV-sensitive phenotype with a genomic DNA fragment. Sequence analysis of the N gene shows that it encodes a protein with an amino-terminal domain similar to that of the cytoplasmic domains of the Drosophila Toll protein and the interleukin 1 receptor in mammals, a putative nucleotide-binding site and 14 imperfect leucine-rich repeats. The presence of these functional domains in the predicted N gene product is consistent with the hypothesis that the N resistance gene functions in a signal transduction pathway. Similarities of N to Toll and the interleukin 1 receptor suggest a similar signaling mechanism leading to rapid gene induction and TMV resistance.
Resumo:
Objectives: To identify potential molecular genetic determinants of cardiovascular ischemic tolerance in wild-type and transgenic hearts overexpressing A(1) adenosine receptors (A(1)ARs). Methods: cDNA microarrays were used to explore expression of 1824 genes ill wild-type hearts and ischemia-tolerant mouse hearts overexpressing A(1)ARs. Results: Overexpression of A(1)ARs reduced post-ischemic contractile dysfunction, limited arrhythmogenesis, and reduced necrosis by similar to80% in hearts subjected to 30 min global ischemia 60 mill reperfusion. Cardioprotection was abrogated by acute A(1)AR antagonism, and only a small number (19) of genes were modified by A(1)AR overexpression in normoxic hearts. Ischemia-reperfusion significantly altered expression of 75 genes in wild-type hearts (14 induced, 61 down-regulated), including genes for metabolic enzymes, structural/motility proteins, cell signaling proteins, defense/growth proteins, and regulators of transcription and translation. A(1)AR overexpression reversed the majority of gene down-regulation whereas gene induction was generally unaltered. Additionally, genes involved in cell defence, signaling and gene expression were selectively modified by ischemia in transgenic hearts (33 induced, 10 down-regulated), possibly contributing to the protected phenotype. Real-time PCR verified changes in nine selected genes, revealing concordance with array data. Transcription of the A(1)AR gene was also modestly reduced post-ischemia, consistent with impaired functional sensitivity to A(1)AR stimulation Conclusions: Data are presented regarding the early post-ischemic gene profile of intact heart. Reduced A(1)AR transcription is observed which may contribute to poor outcome from ischemia. A(1)AR overexpression selectively modifies post-ischemic gene expression, potentially contributing to ischemic-tolerance. (C) 2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.
Resumo:
A substantial number of GH regulated genes have been reported in mature hepatocytes. but genes involved in GH-initiated cell differentiation have not yet been identified. Here we have studied a, ell-characterised model of GH-dependent differentiation, adipogenesis of 3T3-F442A preadipocytes, to identify genes rapidly induced by GH. Using the suppression subtractive hybridisation technique, we have identified eight genes induced within 60 min of GH treatment, and verified these by northern analysis. Six were identifiable as Stat 2. Stat 3, thrombospondin-1. oncostatin M receptor beta chain. a DEAD box RNA helicase. and muscleblind. a developmental transcription factor. Bioinformatic approaches assigned one of the two remaining unknown genes as a novel 436 residue serine,threonine kinase. As each of the identified genes hake important developmental roles. they may be important in initiating GH-induced adipogenesis. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.