996 resultados para Gene HFE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Porfiria Cutânea Tardia (PCT) é uma desordem dermatológica, caracterizada por fotossensibilidade induzida pela circulação de porfirinas que se depositam na pele. Tanto a forma familial como a esporádica são desordens dependentes do acúmulo de ferro. A presença da mutação do gene da Hemocromatose (HFE) é um importante fator de risco para o acúmulo de ferro e pouco se sabe sobre sua prevalência na população brasileira. Da mesma forma, existem poucos relatos a respeito da associação entre mutação do gene HFE e Porfiria Cutânea Tardia. No presente trabalho descrevemos as frequências dos principais alelos e genótipos do gene da Hemocromatose HFE1 em uma coorte de 25 pacientes brasileiros atendidos no HUPE, com Porfiria Cutânea Tardia, durante o período de janeiro 1990 à dezembro 2012, realizando uma correlação da presença desta mutação com a sobrecarga de ferro neste grupo de pacientes. Neste estudo foi utilizado um grupo controle da população fluminense pareado por idade, sexo e grupo étnico informado, para comparar com os dados avaliados dos pacientes com PCT. A pesquisa das mutações genéticas C282Y e H63D do gene da hemocromatose ocorreu através de técnicas de PCR tempo real e e os resultados ratificados por sequenciamento de Sanger. Dos resultados encontrados, não ocorreram diferenças estatísticas significativas nas frequências alélicas e genotípicas das mutações C282Y e H63D entre a coorte com PCT e a população controle. Entretanto, há um forte indício da participação da mutação H63D em um paciente homozigoto, para desenvolvimento da doença, conforme observado na literatura. Dos ensaios bioquímicos, os níveis de ferritina encontrados entre os pacientes portadores de PCT com a mutação H63D foram maiores que os indivíduos sem a mutação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Porphyria cutanea tarda is the most common form of porphyria, characterized by the decreased activity of the uroporphyrinogen decarboxylase enzyme. Several reports associated HFE gene mutations of hereditary hemochromatosis with porphyria cutanea tarda worldwide, although up to date only one study has been conducted in Brazil. OBJECTIVES: Investigation of porphyria cutanea tarda association with C282Y and H63D mutations in the HFE gene. Identification of precipitating factors (hepatitis C, HIV, alcoholism and estrogen) and their link with HFE mutations. METHODS: An ambispective study of 60 patients with PCT was conducted during the period from 2003 to 2012. Serological tests for hepatitis C and HIV were performed and histories of alcohol abuse and estrogen intake were investigated. HFE mutations were identified with real-time PCR. RESULTS: Porphyria cutanea tarda predominated in males and alcohol abuse was the main precipitating factor. Estrogen intake was the sole precipitating factor present in 25% of female patients. Hepatitis C was present in 41.7%. All HIV-positive patients (15.3%) had a history of alcohol abuse. Allele frequency for HFE mutations, i.e., C282Y (p = 0.0001) and H63D (p = 0.0004), were significantly higher in porphyria cutanea tarda patients, compared to control group. HFE mutations had no association with the other precipitating factors. CONCLUSIONS: Alcohol abuse, hepatitis C and estrogen intake are prevalent precipitating factors in our porphyria cutanea tarda population; however, hemochromatosis in itself can also contribute to the outbreak of porphyria cutanea tarda, which makes the research for HFE mutations necessary in these patients

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & Aims: HFE-associated Hereditary Hemochromatosis (HH) is one of the most frequent autosomal recessive disease in the caucasian population, caused by the high absorption and deposition of iron in several organs. This accumulation results in several clinical complications such as cirrhosis, arthritis, cardiopathies, diabetes, sexual disorders and skin darkening. Although most of the cases are homozygous individuals for the C282Y mutation, another two mutations, H63D and S65C, have been reported to be associated with milder forms of the disease. The objective is to avaluate the distribution of C282Y, H63D and S65C mutations in the HFE gene in patients with suspected HH in the state of Rio Grande do Norte, Brazil. Methods: Samples of peripheral blood were taken from 335 patients originating from Natal-RN, a city in northeastern Brazil with suspected of HH and which were screened for the HFE gene C282Y, H63D and S65C mutations, using molecular genetics assays (Polymerase Chain Reaction- Restriction Fragments Length Polymorphism). The main criterion for including such patients in the study was the increasing of persistent serum ferritin in individuals aged between 18 and 70 or older, both males and females. As to the exclusion criteria, individuals holding hemolytical anemia, talassemy and previously report of blood transfusion did not take part of the study. Results: Out of the 335 patients studied, 143 patients showed absence of mutation and 195 showed some kind of mutation in the HFE gene: 07/335 (2,08%) were homozigous C282Y, 25/335 heterozygous C282Y, 25/335 (7,46%) were homozigous H63D, 115/335 (34,32%) heterozygous H63D, 5/335 (1,48%) heterozygous S65D, 11/ 335 (3,28%) and were double heterozygous (H63D/C282Y). None patients were Homozygous S65D and S65D heterozygous (S65D/H63D and S65D/C282Y). Conclusions. The distribution of the HFE gene C282Y, H63D and S65C mutations found in our group matches the tendencies observed in other European countries. Due to the high prevalence of hemochromatosis, its seriousness and easy treatment, the genetic diagnosis of HH has become a dream, especially in the high risk group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our objective was to determine how the distribution of red blood cell diseases is related to malaria occurrence in north Brazil, a region endemic for malaria. We evaluated the incidence of two mutations in the HFE gene, H63D and C282Y, in two study groups: a control blood donor group, with no indication of malaria infection, and a group constituted of malaria patients of four states of the Amazonian region. The hemoglobin polymorphisms were obtained by HPLC and classical laboratory methodologies, and the two mutations in the HFE gene were assayed by PCR-RFLP. We found a high frequency of alpha thalassemia, but there were no significant differences between blood donors and malaria patients. There were also no significant differences in the frequencies of HbA(2); however, the frequency of HbF was significantly different in individuals with malaria from Para and Rondonia. The mean number of reticulocytes was significantly reduced in the blood donors from the northern region, suggesting an adaptive strategy of these populations to parasitic attack by Plasmodium. Most individuals were heterozygous for the H63D allele of the HFE gene in both study groups. In the blood donors group, the greatest frequency of the H63D allele was found in Caucasians of all the states. In the malaria patients group in Rondonia, there was a high frequency of the H63D allele among the non-Caucasians. In the other states, and in the malaria patients group, the H63D allele was the most frequent among the Caucasians. Based on our results, we suggest that the maintenance of polymorphism of the mutations in the gene HFE can be explained by selective factors other than malaria, or it is due to simple allelic oscillation and by the constant gene flow among the populations in Brazil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective Hereditary hemochromatosis is a common autosomal recessive disorder of iron metabolism. Among Northern Europeans the carrier frequency is estimated to be I in 10, while up to 1 in 200 is affected by the disease. Arthropathy is one early clinical manifestation of this disease, but the articular features are often misdiagnosed. In this study the two frequent mutations of the HLA-linked hemochromatosis gene (HFE) were investigated, in a rheumatology clinic population. Methods Two hundred and six consecutive patients (mean age 57.7 years; 38 male/168 female) attending a rheumatology clinic over a period of 14 months were screened for HFE mutations (C282Y and H63D). All standard diagnostic procedures were used to identify the aetiology: of the arthropathy. Mutations were evaluated by separation on PAGE of digested PCR amplificates of DNA (by SnapI and Bcl-I, for C282Y and H63D, respectively) obtained from PBMCs. Results The C282Y and H63D allele frequencies were 4.5 and 12.8 inpatients with rheumatic diseases. Five patients were homozygote for H63D (2.4%), and one,for C282Y (0.5%). Five patients were compound heterozygous (2.4%). The observed C282Y allele frequency in rheumatic patients with undifferentiated arthritis was 12.9 and exceeded that of healthy subjects (p = 0.01). Conclusions Determination of the HFE genotype is clinically useful in patients with arthritis of unknown origin, to allow early diagnosis of hemochromatosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A homeostase do ferro requer um rigoroso processo de regulação, uma vez que este é um elemento essencial para alguns dos mecanismos celulares básicos mas, quando se encontra em excesso, origina profundos danos celulares e falha de órgãos. Dado que o organismo humano não possui um mecanismo ativo de excreção de ferro, é essencial que a sua homeostase seja estabelecida através de uma estreita comunicação entre os locais de absorção, utilização e armazenamento. Esta interligação é conseguida, essencialmente, através da ação de uma hormona circulante, a hepcidina. A hepcidina é sintetizada ao nível dos hepatócitos do fígado, sendo a sua expressão aumentada pelos níveis de ferro e inflamação e suprimida pela eritropoiese e hipoxia. A hepcidina regula negativamente a absorção duodenal do ferro proveniente da alimentação, a libertação pelos macrófagos do ferro resultante da fagocitose dos glóbulos vermelhos senescentes, assim como a libertação do ferro armazenado nos hepatócitos. A hemocromatose hereditátria (HH) do tipo 1 é uma doença de transmissão autossómica recessiva associada a mutações no gene HFE (p.Cys282Tyr e p.His63Asp). É a patologia humana mais comum de sobrecarga primária em ferro, apresenta penetrância incompleta, e é um dos distúrbios genéticos mais frequentes em caucasianos de ascendência Norte-Europeia. Na hemocromatose, apesar de haver um excesso de ferro no organismo, este facto não é refletido no nível de expressão da hormona hepcidina (cujos níveis deveriam aumentar). Pelo contrário, o nível de expressão da hepcidina encontra-se diminuído o que perpetua a constante absorção do ferro a nível duodenal. Os sintomas associados à doença iniciam-se geralmente na meia-idade e começam por consistir em sintomas gerais de fadiga e dores articulares. No entanto, a progressiva acumulação do ferro em vários órgãos (tais como fígado, coração e pâncreas) provoca aí graves danos, tais como cirrose, carcinoma hepatocelular, cardiomiopatias e diabetes. Para além da HH do tipo 1, podem ocorrer outros tipos de hemocromatose por mutações noutros genes relacionados com o metabolismo do ferro (tais como TFR2, HJV, HAMP, SLC40A1, etc). Mutações em genes como HAMP e HJV associam-se a hemocromatoses mais graves, de início ainda na juventude (hemocromatose juvenil). A implementação no nosso laboratório da nova metodologia de Next-Generation Sequencing permitiu-nos realizar a pesquisa de variantes simultaneamente em 6 genes relacionados com o metabolismo do ferro, em 88 doentes com fenótipo de hemocromatose hereditária não-clássica. Foram identificadas 54 variantes diferentes sendo algumas delas novas. Estudos in silico e estudos funcionais in vitro (em linhas celulares) permitiram-nos comprovar a patogenicidade de algumas das variantes novas e compreender os mecanismos moleculares subjacentes ao desenvolvimento da sobrecarga em ferro. Pelo contrário, no lado oposto do espetro das patologias relacionadas com o ferro, encontram-se as anemias por falta de ferro (anemias ferropénicas). A Organização Mundial de Saúde define anemia quando os níveis de hemoglobina no sangue são menores do que 12 g/dL na Mulher e 13 g/dL no Homem. A hemoglobina é a proteína existente nos glóbulos vermelhos do sangue, responsável pelo transporte de oxigénio no organismo, e cuja molécula é um tetrâmero formado por 4 cadeias polipeptídicas (as globinas) e 4 grupos heme que contêm 4 átomos de ferro. A falta de ferro impede que se formem as moléculas de hemoglobina a níveis normais em cerca de 20% da população portuguesa e isso é devido a carências alimentares ou a dificuldades na absorção do ferro proveniente da alimentação. Entre os fatores genéticos moduladores desta última situação parecem estar algumas variantes polimórficas no gene TMPRSS6, codificante da proteína Matriptase-2, um dos agentes envolvidos na regulação da expressão da hepcidina. Por outro lado, mutações neste gene dão origem a anemias ferropénicas graves, refratárias ao tratamento oral com ferro (Iron Refractory Iron Deficiency Anaemia - IRIDA). As Hemoglobinopatias são outro tipo de anemia hereditária. Estas não estão relacionadas com o défice de ferro mas sim com defeitos nas cadeias globínicas, constituintes da hemoglobina (α2β2). As hemoglobinopatias que estão relacionadas com um problema quantitativo, ou seja quando há ausência ou diminuição de síntese de uma cadeia globínica, denominam-se talassémias: beta-talassémia, alfa-talassémia, delta-talassémia, etc, consoante o gene afetado. Por outro lado, quando o problema é de carácter qualitativo, ou seja ocorre a síntese de uma cadeia globínica estruturalmente anómala, esta é denominada uma variante de hemoglobina. Enquadra-se neste último grupo a Anemia das Células Falciformes ou Drepanocitose. As hemoglobinopatias são das patologias genéticas mais frequentes no mundo, sendo que nalguns locais são um grave problema de saúde pública. Em Portugal foram realizados estudos epidemiológicos que permitiram determinar a frequência de portadores na população e foi implementado um programa de prevenção.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background. Hereditary hemochromatosis is an autosomal recessive disorder of iron metabolism that is characterized by excess accumulation of iron in various organs and often leads to diabetes mellitus (DM). To study whether mutations in the hemochromatosis gene (HFE) could be a risk factor for the development of gestational diabetes mellitus (GDM), the prevalence of HFE mutations in patients with GDM was compared to that of healthy pregnant controls. Methods: GDM was diagnosed in 208 of 2,421 pregnant woman screened between the 24th and 28th week of gestation over a period of 18 months. Patients and 170 matched control subjects were screened for the HFE gene mutations C282Y and H63D. Results: In North and Central European GDM patients, the allele frequency of the C282Y mutation (7.7%) was higher than in pregnant controls (2.9%; p = 0.04), while the frequency of the H63D mutation was not different (p = 0.45). Three patients with GDM were homozygous for H63D (3.1%), 1 patient was homozygous for C282Y (1.0%), 2 patients were compound heterozygous (2.0%) and 26 were heterozygous [11 C282Y (11.2%) and 15 H63D (15.3%)]. C282Y and H63D allele frequencies were not different between controls and GDIVI patients of Southern European or non-European origin. Irrespective of the HIFE-mutation status, serum ferritin levels were increased in patients with GDM compared to healthy pregnant controls (p = 0.01), while transferrin saturation was similar in both groups. Conclusions: In North and Central European patients with GDM, the C282Y allele frequency is higherthan in healthy pregnant women, suggesting a genetic susceptibility to the development of GDM. Copyright (c) 2005 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Control of iron homeostasis is essential for healthy central nervous system function: iron deficiency is associated with cognitive impairment, yet iron overload is thought to promote neurodegenerative diseases. Specific genetic markers have been previously identified that influence levels of transferrin, the protein that transports iron throughout the body, in the blood and brain. Here, we discovered that transferrin levels are related to detectable differences in the macro- and microstructure of the living brain. We collected brain MRI scans from 615 healthy young adult twins and siblings, of whom 574 were also scanned with diffusion tensor imaging at 4 Tesla. Fiber integrity was assessed by using the diffusion tensor imaging-based measure of fractional anisotropy. In bivariate genetic models based on monozygotic and dizygotic twins, we discovered that partially overlapping additive genetic factors influenced transferrin levels and brain microstructure. We also examined common variants in genes associated with transferrin levels, TF and HFE, and found that a commonly carried polymorphism (H63D at rs1799945) in the hemochromatotic HFE gene was associated with white matter fiber integrity. This gene has a well documented association with iron overload. Our statistical maps reveal previously unknown influences of the same gene on brain microstructure and transferrin levels. This discovery may shed light on the neural mechanisms by which iron affects cognition, neurodevelopment, and neurodegeneration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hereditary Hemochromatosis (HH) is a genetic disease caused by high iron absorption and deposition in several organs. This accumulation results in clinical disturbances such as cirrhosis, arthritis, cardiopathies, diabetes, sexual disorders and skin darkening. The H63D and C282Y mutations are well defined in the hemochromatosis etiology. The aim of this paper was that of identifying the H63D and C282Y genetical mutations in the hemochromatosis gene and the frequency assessment of these mutations in the HFE protein gene in patients with hyperferritin which are sent to the DNA Center laboratory in Natal, state of Rio Grande do Norte. This paper also evaluates the HH H63D and C282Y gene mutations genotype correlation with the serum ferritin concentration, glucose, alanine aminotransferasis, aspartato aminotransferasis, gama glutamil transferasis and with the clinical complications and also the interrelation with life habits including alcoholism and iron overload. The biochemical dosages and molecule analyses are done respectively by the enzymatic method and PCR with enzymatic restriction. Out of the 183 patients investigated, 51,4% showed no mutation and 48,6% showed some type of mutation: 5,0% were C282Y heterozygous mutation; 1,1%, C282Y homozygous mutation; 31%, H63D heterozygous mutation; 8,7%, H63D homozygous mutation; and 3,3%, heterozygous for the mutation in both genes. As to gender, we observed a greater percentage of cases with molecular alteration in men in relation to women in the two evaluated mutations. The individuals with negative results showed clinical and lab signs which indicate hemochromatosis that other genes could be involved in the iron metabolism. Due to the high prevalence of hemochromatosis and taking into account that hemochromatosis is considered a public health matter, its gravity being preventable and the loss treatment toxicity, the early genetic diagnosis is indicated, especially in patients with high ferritin, and this way it avoids serious clinical manifestations and increases patients' life expectation. Our findings show the importance of doing such genetic studies in individuals suspected of hereditary hemochromatosis due to the high incidence of such a hereditary disease in our region