935 resultados para Gemstone Team PANACEA: Promoting A Novel Approach to Cellular (gene) Expression Alteration
Resumo:
The ability to manipulate gene expression promises to be an important tool for the management of infectious diseases and genetic disorders. However, a major limitation to effective delivery of therapeutic RNA to living cells is the cellular toxicity of conventional techniques. Team PANACEA’s research objective was to create new reagents based on a novel small-molecule delivery system that uses a modular recombinant protein vehicle consisting of a specific ligand coupled to a Hepatitis B Virus-derived RNA binding domain (HBV-RBD). Two such recombinant delivery proteins were developed: one composed of Interleukin-8, the other consisting of the Machupo Virus GP1 protein. The ability of these proteins to deliver RNA to cells were then tested. The non-toxic nature of this technology has the potential to overcome limitations of current methods and could provide a platform for the expansion of personalized medicine.
Resumo:
Motivation: An important problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. We provide a straightforward and easily implemented method for estimating the posterior probability that an individual gene is null. The problem can be expressed in a two-component mixture framework, using an empirical Bayes approach. Current methods of implementing this approach either have some limitations due to the minimal assumptions made or with more specific assumptions are computationally intensive. Results: By converting to a z-score the value of the test statistic used to test the significance of each gene, we propose a simple two-component normal mixture that models adequately the distribution of this score. The usefulness of our approach is demonstrated on three real datasets.
Resumo:
Mestrado Mediterranean Forestry and Natural Resources Management - Instituto Superior de Agronomia - UL
Resumo:
Purpose: The Gow-Gates technique is said to have several advantages over traditional techniques to achieve mandibular nerve anesthesia; however, its routine use is quite limited, mainly due to complications during visual alignment of reference landmarks. The purpose of this study was to verify the validity and accuracy of a new method to reach the injection site. Material and Methods: Fifteen magnetic resonance images were captured. Distances from the ideal injection point in the condylar neck (puncture ideal) to the injection points located in the a and 0 plane intersection (Puncture Gow-Gates and puncture modified) were measured and compared. Results: Positive and significant (P <= .003) Pearson correlations between landmarks and injection points confirmed the validity of the modified technique. Paired t test showed that the segment line puncture ideal-puncture modified, 5.17 mm, was 3 times shorter (P < .001) than the segment line puncture ideal-puncture Gow-Gates, 17.91 mm. As calculated by linear regression, establishing the injection point of the modified technique depended only on the anteroposterior and lateromedial condyle positions. Conclusions: The modified technique proved to be valid and precise and has a determined and an effective injection site. (C) 2009 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Surg 67:2609-2616, 2009
Resumo:
In this study, we have compared the effector functions and fate of a number of human CTL clones in vitro or ex vivo following contact with variant peptides presented either on the cell surface or in a soluble multimeric format. In the presence of CD8 coreceptor binding, there is a good correlation between TCR signaling, killing of the targets, and Fast-mediated CTL apoptosis. Blocking CD8 binding using (alpha3 domain mutants of MHC class I results in much reduced signaling and reduced killing of the targets. Surprisingly, however, Fast expression is induced to a similar degree on these CTLs, and apoptosis of CTL is unaffected. The ability to divorce these events may allow the deletion of antigen-specific and pathological CTL populations without the deleterious effects induced by full CTL activation.
Resumo:
Human organism is interpenetrated by the world of microorganisms, from the conception until the death. This interpenetration involves different levels of interactions between the partners including trophic exchanges, bi-directional cell signaling and gene activation, besides genetic and epigenetic phenomena, and tends towards mutual adaptation and coevolution. Since these processes are critical for the survival of individuals and species, they rely on the existence of a complex organization of adaptive systems aiming at two apparently conflicting purposes: the maintenance of the internal coherence of each partner, and a mutually advantageous coexistence and progressive adaptation between them. Humans possess three adaptive systems: the nervous, the endocrine and the immune system, each internally organized into subsystems functionally connected by intraconnections, to maintain the internal coherence of the system. The three adaptive systems aim at the maintenance of the internal coherence of the organism and are functionally linked by interconnections, in such way that what happens to one is immediately sensed by the others. The different communities of infectious agents that live within the organism are also organized into functional networks. The members of each community are linked by intraconnections, represented by the mutual trophic, metabolic and other influences, while the different infectious communities affect each other through interconnections. Furthermore, by means of its adaptive systems, the organism influences and is influenced by the microbial communities through the existence of transconnections. It is proposed that these highly complex and dynamic networks, involving gene exchange and epigenetic phenomena, represent major coevolutionary forces for humans and microorganisms.
Resumo:
Click here to download PDF
Resumo:
Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previously experimentally achieved by exploiting the several fold difference in T(1). To minimize effects of heterogeneities in metabolites T(1), the aim of the study was to assess MM signal contributions by combining inversion recovery (IR) and diffusion-weighted proton spectroscopy at high-magnetic field (14.1 T) and short echo time (= 8 msec) in the rat brain. IR combined with diffusion weighting experiments (with δ/Δ = 1.5/200 msec and b-value = 11.8 msec/μm(2)) showed that the metabolite nulled spectrum (inversion time = 740 msec) was affected by residuals attributed to creatine, inositol, taurine, choline, N-acetylaspartate as well as glutamine and glutamate. While the metabolite residuals were significantly attenuated by 50%, the MM signals were almost not affected (< 8%). The combination of metabolite-nulled IR spectra with diffusion weighting allows a specific characterization of MM resonances with minimal metabolite signal contributions and is expected to lead to a more precise quantification of the neurochemical profile.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
Gait analysis methods to estimate spatiotemporal measures, based on two, three or four gyroscopes attached on lower limbs have been discussed in the literature. The most common approach to reduce the number of sensing units is to simplify the underlying biomechanical gait model. In this study, we propose a novel method based on prediction of movements of thighs from movements of shanks. Datasets from three previous studies were used. Data from the first study (ten healthy subjects and ten with Parkinson's disease) were used to develop and calibrate a system with only two gyroscopes attached on shanks. Data from two other studies (36 subjects with hip replacement, seven subjects with coxarthrosis, and eight control subjects) were used for comparison with the other methods and for assessment of error compared to a motion capture system. Results show that the error of estimation of stride length compared to motion capture with the system with four gyroscopes and our new method based on two gyroscopes was close ( -0.8 ±6.6 versus 3.8 ±6.6 cm). An alternative with three sensing units did not show better results (error: -0.2 ±8.4 cm). Finally, a fourth that also used two units but with a simpler gait model had the highest bias compared to the reference (error: -25.6 ±7.6 cm). We concluded that it is feasible to estimate movements of thighs from movements of shanks to reduce number of needed sensing units from 4 to 2 in context of ambulatory gait analysis.
Resumo:
Despite major progress in T lymphocyte analysis in melanoma patients, TCR repertoire selection and kinetics in response to tumor Ags remain largely unexplored. In this study, using a novel ex vivo molecular-based approach at the single-cell level, we identified a single, naturally primed T cell clone that dominated the human CD8(+) T cell response to the Melan-A/MART-1 Ag. The dominant clone expressed a high-avidity TCR to cognate tumor Ag, efficiently killed tumor cells, and prevailed in the differentiated effector-memory T lymphocyte compartment. TCR sequencing also revealed that this particular clone arose at least 1 year before vaccination, displayed long-term persistence, and efficient homing to metastases. Remarkably, during concomitant vaccination over 3.5 years, the frequency of the pre-existing clone progressively increased, reaching up to 2.5% of the circulating CD8 pool while its effector functions were enhanced. In parallel, the disease stabilized, but subsequently progressed with loss of Melan-A expression by melanoma cells. Collectively, combined ex vivo analysis of T cell differentiation and clonality revealed for the first time a strong expansion of a tumor Ag-specific human T cell clone, comparable to protective virus-specific T cells. The observed successful boosting by peptide vaccination support further development of immunotherapy by including strategies to overcome immune escape.
Resumo:
The production and use of false identity and travel documents in organized crime represent a serious and evolving threat. However, a case-by-case perspective, thus suffering from linkage blindness and a limited analysis capacity, essentially drives the present-day fight against this criminal problem. To assist in overcoming these limitations, a process model was developed using a forensic perspective. It guides the systematic analysis and management of seized false documents to generate forensic intelligence that supports strategic and tactical decision-making in an intelligence-led policing approach. The model is articulated on a three-level architecture that aims to assist in detecting and following-up on general trends, production methods and links between cases or series. Using analyses of a large dataset of counterfeit and forged identity and travel documents, it is possible to illustrate the model, its three levels and their contribution. Examples will point out how the proposed approach assists in detecting emerging trends, in evaluating the black market's degree of structure, in uncovering criminal networks, in monitoring the quality of false documents, and in identifying their weaknesses to orient the conception of more secured travel and identity documents. The process model proposed is thought to have a general application in forensic science and can readily be transposed to other fields of study.