800 resultados para Gelled electrolyte
Resumo:
Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of 272 nm and a degree of porosity of 87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.
Resumo:
Battery separators based on electrospun membranes of poly(vinylidene fluoride) (PVDF) have been prepared in order to study the effect of fiber alignment on the performance and characteristics of the membrane. The prepared membranes show an average fiber diameter of ~272 nm and a degree of porosity of ~87 %. The gel polymer electrolytes are prepared by soaking the membranes in the electrolyte solution. The alignment of the fibers improves the mechanical properties for the electrospun membranes. Further, the microstructure of the membrane also plays an important role in the ionic conductivity, being higher for the random electrospun membrane due to the lower tortuosity value. Independently of the microstructure, both membranes show good electrochemical stability up to 5.0 V versus Li/Li+. These results show that electrospun membranes based on PVDF are appropriate for battery separators in lithium-ion battery applications, the random membranes showing a better overall performance.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background, aim, and scope The retention of potentially toxic metals in highly weathered soils can follow different pathways that variably affect their mobility and availability in the soil-water-plant system. This study aimed to evaluate the effects of pH, nature of electrolyte, and ionic strength of the solution on nickel (Ni) adsorption by two acric Oxisols and a less weathered Alfisol. Materials and methods The effect of pH on Ni adsorption was evaluated in surface and subsurface samples from a clayey textured Anionic `Rhodic` Acrudox ( RA), a sandy-clayey textured Anionic `Xantic` Acrudox (XA), and a heavy clayey textured Rhodic Kandiudalf (RK). All soil samples were equilibrated with the same concentration of Ni solution (5.0 mg L(-1)) and two electrolyte solutions (CaCl(2) or NaCl) with different ionic strengths (IS) (1.0, 0.1 and 0.01 mol L(-1)). The pH of each sample set varied from 3 to 10 in order to obtain sorption envelopes. Results and discussion Ni adsorption increased as the pH increased, reaching its maximum of nearly pH 6. The adsorption was highest in Alfisol, followed by RA and XA. Competition between Ni(2+) and Ca(2+) was higher than that between Ni(2+) and Na(+) in all soil samples, as shown by the higher percentage of Ni adsorption at pH 5. At pH values below the intersection point of the three ionic strength curves (zero point of salt effect), Ni adsorption was generally higher in the more concentrated solution (highest IS), probably due to the neutralization of positive charges of soil colloids by Cl(-) ions and consequent adsorption of Ni(2+). Above this point, Ni adsorption was higher in the more diluted solution (lowest ionic strength), due to the higher negative potential at the colloid surfaces and the lower ionic competition for exchange sites in soil colloids. Conclusions The effect of ionic strength was lower in the Oxisols than in the Alfisol. The main mechanism that controlled Ni adsorption in the soils was the ionic exchange, since the adsorption of ionic species varied according to the variation of pH values. The ionic competition revealed the importance of electrolyte composition and ionic strength on Ni adsorption in soils from the humid tropics. Recommendations and perspectives The presence of NaCl or CaCl(2) in different ionic strengths affects the availability of heavy metals in contaminated soils. Therefore, the study of heavy metal dynamics in highly weathered soils must consider this behavior, especially in soils with large amounts of acric components.
Resumo:
Commercial Nafion® 117 membranes were successfully modified by in-situ reactions (sol-gel of TEOS and/or polymerization of aniline) within Nafion structures. Water-methanol permeability and proton conductivity were investigated in order to determine the potential performance of these membranes for DMFC systems. Silica-polyaniline modification resulted in 84% methanol crossover reduction, from 2.45x10^-5 cm2.s^-1 for conventional Nafion membranes to 3.71x10^-6 cm2.s^-1 for the modified silica-polyaniline composite membrane at 75 degrees C. In addition, conductivity was not hindered, as the polyaniline-Nafion membrane increased from 12.2 to 15 mS.cm^-1 as compared to Nafion, while a reduction of 11% was observed for silica-polyaniline-Nafion composite membrane. The results in this work strongly suggest the potential of polyaniline nanocomposites to enhance the performance of DMFCs.
Resumo:
N,N,N,N-Tetramethylammonium dicyanamide (Me(4)NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and H-1 nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (sigma = 10(-3) S cm(-2) at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, H-1 NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid-solid transitions at ambient temperatures, subsequent H-1 NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A study was conducted to determine the effects of feeding spineless cactus cladodes on diuresis and urinary electrolyte excretion in goats. Five bucks were used in a 5 x 5 Latin square experiment with 17-day periods. Experimental diets contained (g/kg dry matter (DM) basis) 370, 470, 570, 670, and 770 spineless cactus cladodes. Water consumption from feed and urine output increased linearly (P<0.05) as the level of cactus cladodes in the diet increased. However, water intake from drinking was low and unaffected by cactus cladode level. Creatinine clearance and urinary Na excretion were similar for all dietary treatments while K excretion decrease linearly (P<0.05) as the level of cactus cladodes in the diet increased. Feeding cactus cladodes caused diuresis and reduced urinary K excretion in goats. Possible reasons for these effects include water over-consumption from cactus cladodes and high dietary K intake. (C) 2007 Elsevier B.V. All rights reserved.
Electrolyte transport in the mouse trachea: No evidence for a contribution of luminal K+ conductance
Resumo:
Recent studies on frog skin acini have challenged the question whether Cl- secretion or Na+ absorption in the airways is driven by luminal K+ channels in series to a basolateral K+ conductance. We examined the possible role of luminal K+ channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl- secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+)2Cl(-)K(+) cotransporter azosemide. Similarly, the compound 29313, a blocker of basolateral KCNQ1/KCNE3 K+ channels effectively blocked Cl- secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K+ channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K+ channels in mouse airways, using luminal 29313, clotrimazole and Ba2+ or different K+ channel toxins such as charybdotoxin, apamin and alpha-dendrotoxin. Thus, the present study demonstrates Cl- secretion in mouse airways, which depends on basolateral Na(+)2Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl- channels. Cl- secretion is maintained by the activity of basolateral K+ channels, while no clear evidence was found for the presence of a luminal K+ conductance.
Resumo:
Low-temperature anneals (1200 degreesC for 40 h) of 8 mol% yttria-stabilised zirconia, prior to the samples being sintered at 1500 degreesC, had the effect of improving the ionic conductivity of the specimens. The presence Of SiO2 in the specimens was shown to be detrimental, however. Irrespective of the SiO2 content, this type of heat treatment also leads to improvements in conductivity. Extensive microstructural analysis provided indication of the mechanism of this phenomenon. This included selective formation of zircon, relief of sintering strain leading to the formation of coherent grain boundaries and segregation effects. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Combining ionic liquids (ILs) with polymers offers the prospect of new applications, where they surpass the performance of conventional media, such as organic solvents, giving advantages in terms of improved safety and a higher operating temperature range. In this work we have investigated the morphology, thermal and electrochemical properties of polymer electrolytes prepared through the addition of con- trolled quantities of the cholinium based IL N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluo- romethylsulfonyl)imide ([N1 1 1 2(OH)] [NTf2]) to a deoxyribonucleic acid (DNA) host network. These novel IL-based electrolytes have been analyzed aiming at applications in electrochemical devices. An optimized sample showed good thermal stability up to 155 °C and a wide electrochemical window of ~3.5 V. The highest conductivity was registered for the DNA[N1 1 1 2(OH)][NTf2] (1:1) (2.82 × 10-5 and 1.09 × 10-3 S cm-1 at 30 and 100 °C, respectively).
Resumo:
La soja y el maní son cultivos de gran importancia en la provincia de Córdoba y en la Argentina. La utilización de proteínas vegetales se ha incrementado notablemente debido a su alto valor nutricional y a sus atributos funcionales deseables. Las harinas de soja y de maní, subproductos de la extracción de aceite, presentan un alto contenido de proteínas vegetales de excelente calidad nutricional, de bajo precio y con escaso nivel de aprovechamiento en la industria alimenticia. Los concentrados de proteínas de soja son poco utilizados en la elaboración de alimentos, además el desarrollo de concentrados de proteínas de maní puede proveer a la industria de un nuevo ingrediente con alto contenido de proteínas para la formulación y fortificación de alimentos tradicionales. Los postres listos para consumir disponibles en el mercado, están formados por mezclas de almidón gelificado y derivados lácteos, sobre los que se agregan diversos aditivos alimentarios (como sacarosa, aromatizantes, espesantes, etc.). La incorporación de proteínas vegetales puede ser una eficaz forma de incrementar el nivel de proteínas y, en consecuencia, el valor nutricional de estos productos. Además de ser una alternativa a los alimentos elaborados con proteínas animales. Pese a que Córdoba es un gran productor de soja y maní, sus derivados no son empleados actualmente como ingredientes en este tipo de alimentos.El objetivo general de este proyecto es estudiar el efecto de la incorporación de proteínas de origen vegetal sobre las propiedades físico-químicas y funcionales de sistemas alimenticios basados en almidón gelatinizado, prestando fundamental atención a las interacciones que se establecen entre las diferentes moléculas. Se planifica obtener concentrados de proteínas a partir de harina desgrasada de soja y de maní y estudiar su composición y sus propiedades funcionales. Se elaborarán mezclas de los concentrados con almidones de maíz, mandioca y trigo. Se estudiará el comportamiento termo-mecánico de las mezclas y la calidad de los geles mediante la cantidad de agua liberada, el perfil reológico y el color. También se realizarán análisis sensoriales para la selección de los parámetros de calidad de los geles y se estudiarán la digestibilidad de las proteínas y del almidón. Al mismo tiempo se estudiarán las interacciones químicas y físicas entre los distintos componentes. Los resultados servirán para generar y difundir conocimientos sobre la relación entre las interacciones y la calidad de los productos, lo que facilitará la optimización de formulaciones y procesos.