843 resultados para Geldart classification
Resumo:
In this research fluidization behavior of cubical Bovine intestine samples was studied. Bovine intestine samples were heat pump dried at atmospheric pressure and at emperatures below and above the material freezing points. Experiments were conducted to study fluidization characteristics and drying kinetics at different drying conditions. Bovine particles were characterized according to Geldart classification and minimum fluidization velocity was calculated using Ergun Equation and generalized equation for all drying conditions at the beginning of the trials and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. Walli’s values determined were positive at the beginning and end of all trials indicating stable fluidisation at the beginning and end for each drying condition.
Resumo:
In order to establish the influence of the drying air characteristics on the drying performance and fluidization quality of bovine intestine for pet food, several drying tests have been carried out in a laboratory scale heat pump assisted fluid bed dryer. Bovine intestine samples were heat pump fluidized bed dried at atmospheric pressure and at temperatures below and above the materials freezing points, equipped with a continuous monitoring system. The investigation of the drying characteristics have been conducted in the temperature range −10 to 25 ◦C and the airflow in the range 1.5–2.5 m/s. Some experiments were conducted as single temperature drying experiments and others as two stage drying experiments employing two temperatures. An Arrhenius-type equation was used to interpret the influence of the drying air temperature on the effective diffusivity, calculated with the method of slopes in terms of energy activation, and this was found to be sensitive to the temperature. The effective diffusion coefficient of moisture transfer was determined by the Fickian method using uni-dimensional moisture movement in both moisture, removal by evaporation and combined sublimation and evaporation. Correlations expressing the effective moisture diffusivity and drying temperature are reported. Bovine particles were characterized according to the Geldart classification and the minimum fluidization velocity was calculated using the Ergun Equation and generalized equation for all drying conditions at the beginning and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the dryingv for each trial. The determined Walli’s values were positive at the beginning and end of all trials indicating stable fluidization at the beginning and end for each drying condition.
Resumo:
Leijuttaminen on tärkeä tekniikan sovellus energiantuotannossa. Leijutusreaktorin suunnittelussa ongelmana on kuitenkin oikeiden leijutusnopeuksien käyttäminen halutun tuloksen saamiseksi. Eri korrelaatiot leijutusnopeuksille antavat hyvinkin erilaisia vastauksia, jolloin niitä on vertailtava ja niistä on valittava paras tilanteen mukaan. Leijuttamista tapahtuu, kun hienojakoisesta aineesta koostuvan kerroksen alapuolelta puhalletaan kaasua sen läpi. Leijutusnopeuden ja leijutettavan aineen perusteella leijutilat jaetaan eri tyyppeihin ja niitä kuvaavat erilaiset referenssinopeudet. Nopeuksista tärkeimmät ovat minimileijutusnopeus, terminaalinopeus sekä siirtymäaluenopeus. Eri leijutustilat ja -nopeudet sekä aineen koosta ja tiheydestä kertovat tekijät, Geldart-luokat, voidaan koota yhdeksi diagrammiksi. Diagrammi on dimensiottomien muuttujien ansiosta universaali ja täten hyvin käyttökelpoinen työkalu leijutusnopeuksia ja -tiloja määritettäessä. Työssä esitetyn teorian pohjalta tehty laskentatyökalu hyödyntää Matlabia ja Exceliä. Se vertailee eri leijutuskorrelaatioita ja valitsee niistä tilanteen mukaan parhaan. Lisäksi se havainnollistaa vallitsevaa leijutilaa piirtämällä pisteen Excelissä tehtyyn leijutila-diagrammiin. Laskentatyökalu näyttää, että korrelaatioiden välillä on suuriakin eroja. Terminaalinopeuteen vaikuttaa suuresti partikkelin muoto, joten sen olettaminen palloksi voi antaa moninkertaisen nopeuden todellisuuteen nähden. Siirtymäaluenopeudelle on eri tuloksia antavia mittausmenetelmiä, jolloin korrelaatiotkin antavat toisistaan suuresti poikkeavia tuloksia.